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Problems

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all fun
tions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq

for all x, y P Qą0.

(Switzerland)

A2.

Find all positive integers n ě 3 for whi
h there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 su
h that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distin
t �nite subsets F and G of S su
h that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 su
h that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

A4.

Let a0, a1, a2, . . . be a sequen
e of real numbers su
h that a0 “ 0, a1 “ 1, and for

every n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

A5.

Determine all fun
tions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯

for all x, y ą 0.

(South Korea)

A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real 
oe�
ients

su
h that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whi
h satisfy a ` b ` c ` d “ 100.

(Taiwan)
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Combinatori
s

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S 
an be partitioned into

two subsets with equal sums of elements, with one of subsets of 
ardinality m.

(I
eland)

C2.

Queenie and Horst play a game on a 20 ˆ 20 
hessboard. In the beginning the board

is empty. In every turn, Horst pla
es a bla
k knight on an empty square in su
h a way that his

new knight does not atta
k any previous knights. Then Queenie pla
es a white queen on an

empty square. The game gets �nished when somebody 
annot move.

Find the maximal positive K su
h that, regardless of the strategy of Queenie, Horst 
an

put at least K knights on the board.

(Armenia)

C3.

Let n be a given positive integer. Sisyphus performs a sequen
e of turns on a board


onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus 
hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus 
annot rea
h the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

C4.

An anti-Pas
al pyramid is a �nite set of numbers, pla
ed in a triangle-shaped array

so that the �rst row of the array 
ontains one number, the se
ond row 
ontains two numbers,

the third row 
ontains three numbers and so on; and, ex
ept for the numbers in the bottom

row, ea
h number equals the absolute value of the di�eren
e of the two numbers below it. For

instan
e, the triangle below is an anti-Pas
al pyramid with four rows, in whi
h every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 o

urs exa
tly on
e:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pas
al pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exa
tly on
e?

(Iran)

C5.

Let k be a positive integer. The organising 
ommittee of a tennis tournament is to

s
hedule the mat
hes for 2k players so that every two players play on
e, ea
h day exa
tly one

mat
h is played, and ea
h player arrives to the tournament site the day of his �rst mat
h, and

departs the day of his last mat
h. For every day a player is present on the tournament, the


ommittee has to pay 1 
oin to the hotel. The organisers want to design the s
hedule so as to

minimise the total 
ost of all players' stays. Determine this minimum 
ost.

(Russia)
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C6.

Let a and b be distin
t positive integers. The following in�nite pro
ess takes pla
e on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we 
hoose su
h a pair and

in
rease one of its 
omponents by a and the other by b.

piiq If no su
h pair exists, we write down two times the number 0.

Prove that, no matter how we make the 
hoi
es in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

C7.

Consider 2018 pairwise 
rossing 
ir
les no three of whi
h are 
on
urrent. These 
ir
les

subdivide the plane into regions bounded by 
ir
ular edges that meet at verti
es. Noti
e that

there are an even number of verti
es on ea
h 
ir
le. Given the 
ir
le, alternately 
olour the

verti
es on that 
ir
le red and blue. In doing so for ea
h 
ir
le, every vertex is 
oloured twi
e �

on
e for ea
h of the two 
ir
les that 
ross at that point. If the two 
olourings agree at a vertex,

then it is assigned that 
olour; otherwise, it be
omes yellow. Show that, if some 
ir
le 
ontains

at least 2061 yellow points, then the verti
es of some region are all yellow.

(India)
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Geometry

G1.

Let ABC be an a
ute-angled triangle with 
ir
um
ir
le Γ. Let D and E be points on

the segments AB and AC, respe
tively, su
h that AD “ AE. The perpendi
ular bise
tors of

the segments BD and CE interse
t the small ar
s

ŊAB and

ŊAC at points F and G respe
tively.

Prove that DE ‖ FG.

(Gree
e)

G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point su
h that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respe
tively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is 
y
li
.

(Australia)

G3.

A 
ir
le ω of radius 1 is given. A 
olle
tion T of triangles is 
alled good, if the following


onditions hold:

piq ea
h triangle from T is ins
ribed in ω;

piiq no two triangles from T have a 
ommon interior point.

Determine all positive real numbers t su
h that, for ea
h positive integer n, there exists a

good 
olle
tion of n triangles, ea
h of perimeter greater than t.

(South Afri
a)

G4.

A point T is 
hosen inside a triangle ABC. Let A1, B1, and C1 be the re�e
tions

of T in BC, CA, and AB, respe
tively. Let Ω be the 
ir
um
ir
le of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respe
tively. Prove that the

lines AA2, BB2, and CC2 are 
on
urrent on Ω.

(Mongolia)

G5.

Let ABC be a triangle with 
ir
um
ir
le ω and in
entre I. A line ℓ interse
ts the

lines AI, BI, and CI at points D, E, and F , respe
tively, distin
t from the points A, B, C,

and I. The perpendi
ular bise
tors x, y, and z of the segments AD, BE, and CF , respe
tively

determine a triangle Θ. Show that the 
ir
um
ir
le of the triangle Θ is tangent to ω.

(Denmark)

G6.

A 
onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is 
hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

G7.

Let O be the 
ir
um
entre, and Ω be the 
ir
um
ir
le of an a
ute-angled triangle ABC.

Let P be an arbitrary point on Ω, distin
t from A, B, C, and their antipodes in Ω. Denote

the 
ir
um
entres of the triangles AOP , BOP , and COP by OA, OB, and OC , respe
tively.

The lines ℓA, ℓB, and ℓC perpendi
ular to BC, CA, and AB pass through OA, OB, and OC ,

respe
tively. Prove that the 
ir
um
ir
le of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)



Shortlisted problems 7

Number Theory

N1.

Determine all pairs pn, kq of distin
t positive integers su
h that there exists a positive

integer s for whi
h the numbers of divisors of sn and of sk are equal.

(Ukraine)

N2.

Let n ą 1 be a positive integer. Ea
h 
ell of an n ˆ n table 
ontains an integer.

Suppose that the following 
onditions are satis�ed:

piq Ea
h number in the table is 
ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any 
olumn, is 
ongruent

to n modulo n2
.

Let Ri be the produ
t of the numbers in the ith row, and Cj be the produ
t of the numbers in

the jth 
olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are 
ongruent modulo n4
.

(Indonesia)

N3.

De�ne the sequen
e a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequen
e whi
h 
an be expressed as a sum of (two or more) distin
t terms

of the sequen
e, as well as in�nitely many of those whi
h 
annot be expressed in su
h a way.

(Serbia)

N4.

Let a1, a2, . . ., an, . . . be a sequen
e of positive integers su
h that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m su
h that an “ an`1 for all n ě m.

(Mongolia)

N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t.

Is it possible that both xy and zt are perfe
t squares?

(Russia)

N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a fun
tion su
h that fpm ` nq | fpmq ` fpnq for

all pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whi
h divides

all values of f .

(Mexi
o)

N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distin
t

positive integers not ex
eeding 5n. Suppose that the sequen
e

a1

b1
,
a2

b2
, . . . ,

an

bn

forms an arithmeti
 progression. Prove that the terms of the sequen
e are equal.

(Thailand)
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Solutions

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all fun
tions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq p˚q

for all x, y P Qą0.

(Switzerland)

Answer: fpxq “ 1 for all x P Qą0.

Solution. Take any a, b P Qą0. By substituting x “ fpaq, y “ b and x “ fpbq, y “ a into p˚q
we get

f
`
fpaq

˘2
fpbq “ f

`
fpaq2fpbq2

˘
“ f

`
fpbq

˘2
fpaq,

whi
h yields

f
`
fpaq

˘2

fpaq “ f
`
fpbq

˘2

fpbq for all a, b P Qą0.

In other words, this shows that there exists a 
onstant C P Qą0 su
h that f
`
fpaq

˘2 “ Cfpaq,
or ˜

f
`
fpaq

˘

C

¸2

“ fpaq
C

for all a P Qą0. (1)

Denote by fnpxq “ fpfp. . . pfloooomoooon
n

pxqq . . . qq the nth

iteration of f . Equality (1) yields

fpaq
C

“
ˆ
f 2paq
C

˙2

“
ˆ
f 3paq
C

˙4

“ ¨ ¨ ¨ “
ˆ
fn`1paq

C

˙2n

for all positive integer n. So, fpaq{C is the 2n-th power of a rational number for all positive

integer n. This is impossible unless fpaq{C “ 1, sin
e otherwise the exponent of some prime in

the prime de
omposition of fpaq{C is not divisible by su�
iently large powers of 2. Therefore,

fpaq “ C for all a P Qą0.

Finally, after substituting f ” C into p˚q we get C “ C3
, when
e C “ 1. So fpxq ” 1 is the

unique fun
tion satisfying p˚q.

Comment 1. There are several variations of the solution above. For instan
e, one may start with

�nding fp1q “ 1. To do this, let d “ fp1q. By substituting x “ y “ 1 and x “ d2, y “ 1 into p˚q
we get fpd2q “ d3 and fpd6q “ fpd2q2 ¨ d “ d7. By substituting now x “ 1, y “ d2 we obtain

fpd6q “ d2 ¨ d3 “ d5. Therefore, d7 “ fpd6q “ d5, when
e d “ 1.

After that, the rest of the solution simpli�es a bit, sin
e we already know that C “ fpfp1qq2

fp1q “ 1.

Hen
e equation p1q be
omes merely fpfpaqq2 “ fpaq, whi
h yields fpaq “ 1 in a similar manner.

Comment 2. There exist non
onstant fun
tions f : R` Ñ R`
satisfying p˚q for all real x, y ą 0 �

e.g., fpxq “ ?
x.
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A2.

Find all positive integers n ě 3 for whi
h there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 su
h that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

Answer: n 
an be any multiple of 3.

Solution 1. For the sake of 
onvenien
e, extend the sequen
e a1, . . . , an`2 to an in�nite

periodi
 sequen
e with period n. (n is not ne
essarily the shortest period.)

If n is divisible by 3, then pa1, a2, . . .q “ p´1,´1, 2,´1,´1, 2, . . .q is an obvious solution.

We will show that in every periodi
 sequen
e satisfying the re
urren
e, ea
h positive term is

followed by two negative values, and after them the next number is positive again. From this,

it follows that n is divisible by 3.

If the sequen
e 
ontains two 
onse
utive positive numbers ai, ai`1, then ai`2 “ aiai`1`1 ą 1,

so the next value is positive as well; by indu
tion, all numbers are positive and greater than 1.

But then ai`2 “ aiai`1 ` 1 ě 1 ¨ ai`1 ` 1 ą ai`1 for every index i, whi
h is impossible: our

sequen
e is periodi
, so it 
annot in
rease everywhere.

If the number 0 o

urs in the sequen
e, ai “ 0 for some index i, then it follows that

ai`1 “ ai´1ai ` 1 and ai`2 “ aiai`1 ` 1 are two 
onse
utive positive elements in the sequen
es

and we get the same 
ontradi
tion again.

Noti
e that after any two 
onse
utive negative numbers the next one must be positive: if

ai ă 0 and ai`1 ă 0, then ai`2 “ a1ai`1 ` 1 ą 1 ą 0. Hen
e, the positive and negative numbers

follow ea
h other in su
h a way that ea
h positive term is followed by one or two negative values

and then 
omes the next positive term.

Consider the 
ase when the positive and negative values alternate. So, if ai is a negative

value then ai`1 is positive, ai`2 is negative and ai`3 is positive again.

Noti
e that aiai`1 ` 1 “ ai`2 ă 0 ă ai`3 “ ai`1ai`2 ` 1; by ai`1 ą 0 we 
on
lude ai ă ai`2.

Hen
e, the negative values form an in�nite in
reasing subsequen
e, ai ă ai`2 ă ai`4 ă . . .,

whi
h is not possible, be
ause the sequen
e is periodi
.

The only 
ase left is when there are 
onse
utive negative numbers in the sequen
e. Suppose

that ai and ai`1 are negative; then ai`2 “ aiai`1 ` 1 ą 1. The number ai`3 must be negative.

We show that ai`4 also must be negative.

Noti
e that ai`3 is negative and ai`4 “ ai`2ai`3 ` 1 ă 1 ă aiai`1 ` 1 “ ai`2, so

ai`5 ´ ai`4 “ pai`3ai`4 ` 1q ´ pai`2ai`3 ` 1q “ ai`3pai`4 ´ ai`2q ą 0,

therefore ai`5 ą ai`4. Sin
e at most one of ai`4 and ai`5 
an be positive, that means that ai`4

must be negative.

Now ai`3 and ai`4 are negative and ai`5 is positive; so after two negative and a positive

terms, the next three terms repeat the same pattern. That 
ompletes the solution.

Solution 2. We prove that the shortest period of the sequen
e must be 3. Then it follows

that n must be divisible by 3.

Noti
e that the equation x2 ` 1 “ x has no real root, so the numbers a1, . . . , an 
annot be

all equal, hen
e the shortest period of the sequen
e 
annot be 1.

By applying the re
urren
e relation for i and i ` 1,

pai`2 ´ 1qai`2 “ aiai`1ai`2 “ aipai`3 ´ 1q, so

a2i`2 ´ aiai`3 “ ai`2 ´ ai.
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By summing over i “ 1, 2, . . . , n, we get

nÿ

i“1

pai ´ ai`3q2 “ 0.

That proves that ai “ ai`3 for every index i, so the sequen
e a1, a2, . . . is indeed periodi
 with

period 3. The shortest period 
annot be 1, so it must be 3; therefore, n is divisible by 3.

Comment. By solving the system of equations ab ` 1 “ c, bc ` 1 “ a, ca ` 1 “ b, it 
an be seen

that the pattern p´1,´1, 2q is repeated in all sequen
es satisfying the problem 
onditions.
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A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distin
t �nite subsets F and G of S su
h that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 su
h that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

Solution 1. Argue indire
tly. Agree, as usual, that the empty sum is 0 to 
onsider rationals

in r0, 1q; adjoining 0 
auses no harm, sin
e

ř
xPF 1{x “ 0 for no nonempty �nite subset F of S.

For every rational r in r0, 1q, let Fr be the unique �nite subset of S su
h that

ř
xPFr

1{x “ r.

The argument hinges on the lemma below.

Lemma. If x is a member of S and q and r are rationals in r0, 1q su
h that q ´ r “ 1{x, then x

is a member of Fq if and only if it is not one of Fr.

Proof. If x is a member of Fq, then

ÿ

yPFqrtxu

1

y
“

ÿ

yPFq

1

y
´ 1

x
“ q ´ 1

x
“ r “

ÿ

yPFr

1

y
,

so Fr “ Fq r txu, and x is not a member of Fr. Conversely, if x is not a member of Fr, then

ÿ

yPFrYtxu

1

y
“

ÿ

yPFr

1

y
` 1

x
“ r ` 1

x
“ q “

ÿ

yPFq

1

y
,

so Fq “ Fr Y txu, and x is a member of Fq. l

Consider now an element x of S and a positive rational r ă 1. Let n “ trxu and 
onsider

the sets Fr´k{x, k “ 0, . . . , n. Sin
e 0 ď r ´ n{x ă 1{x, the set Fr´n{x does not 
ontain x, and

a repeated appli
ation of the lemma shows that the Fr´pn´2kq{x do not 
ontain x, whereas the

Fr´pn´2k´1q{x do. Consequently, x is a member of Fr if and only if n is odd.

Finally, 
onsider F2{3. By the pre
eding, t2x{3u is odd for ea
h x in F2{3, so 2x{3 is not

integral. Sin
e F2{3 is �nite, there exists a positive rational ε su
h that tp2{3 ´ εqxu “ t2x{3u
for all x in F2{3. This implies that F2{3 is a subset of F2{3´ε whi
h is impossible.

Comment. The solution above 
an be adapted to show that the problem statement still holds, if the


ondition r ă 1 in (2) is repla
ed with r ă δ, for an arbitrary positive δ. This yields that, if S does not

satisfy (1), then there exist in�nitely many positive rational numbers r ă 1 su
h that

ř
xPF 1{x ‰ r

for all �nite subsets F of S.

Solution 2. A �nite S 
learly satis�es (2), so let S be in�nite. If S fails both 
onditions,

so does S r t1u. We may and will therefore assume that S 
onsists of integers greater than 1.

Label the elements of S in
reasingly x1 ă x2 ă ¨ ¨ ¨ , where x1 ě 2.

We �rst show that S satis�es (2) if xn`1 ě 2xn for all n. In this 
ase, xn ě 2n´1x1 for

all n, so

s “
ÿ

ně1

1

xn

ď
ÿ

ně1

1

2n´1x1

“ 2

x1

.

If x1 ě 3, or x1 “ 2 and xn`1 ą 2xn for some n, then
ř

xPF 1{x ă s ă 1 for every �nite subset

F of S, so S satis�es (2); and if x1 “ 2 and xn`1 “ 2xn for all n, that is, xn “ 2n for all n, then

every �nite subset F of S 
onsists of powers of 2, so
ř

xPF 1{x ‰ 1{3 and again S satis�es (2).

Finally, we deal with the 
ase where xn`1 ă 2xn for some n. Consider the positive rational

r “ 1{xn ´ 1{xn`1 ă 1{xn`1. If r “ ř
xPF 1{x for no �nite subset F of S, then S satis�es (2).



Shortlisted problems � solutions 13

We now assume that r “ ř
xPF0

1{x for some �nite subset F0 of S, and show that S satis�es (1).

Sin
e

ř
xPF0

1{x “ r ă 1{xn`1, it follows that xn`1 is not a member of F0, so

ÿ

xPF0Ytxn`1u

1

x
“

ÿ

xPF0

1

x
` 1

xn`1

“ r ` 1

xn`1

“ 1

xn

.

Consequently, F “ F0 Y txn`1u and G “ txnu are distin
t �nite subsets of S su
h thatř
xPF 1{x “ ř

xPG 1{x, and S satis�es (1).
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A4.

Let a0, a1, a2, . . . be a sequen
e of real numbers su
h that a0 “ 0, a1 “ 1, and for every

n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

Answer: The maximal value is

2016
20172

.

Solution 1. The 
laimed maximal value is a
hieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2016 “ 1, a2017 “ a2016 ` ¨ ¨ ¨ ` a0

2017
“ 1 ´ 1

2017
,

a2018 “ a2017 ` ¨ ¨ ¨ ` a1

2017
“ 1 ´ 1

20172
.

Now we need to show that this value is optimal. For brevity, we use the notation

Spn, kq “ an´1 ` an´2 ` ¨ ¨ ¨ ` an´k for nonnegative integers k ď n.

In parti
ular, Spn, 0q “ 0 and Spn, 1q “ an´1. In these terms, for every integer n ě 2 there

exists a positive integer k ď n su
h that an “ Spn, kq{k.
For every integer n ě 1 we de�ne

Mn “ max
1ďkďn

Spn, kq
k

, mn “ min
1ďkďn

Spn, kq
k

, and ∆n “ Mn ´ mn ě 0.

By de�nition, an P rmn,Mns for all n ě 2; on the other hand, an´1 “ Spn, 1q{1 P rmn,Mns.
Therefore,

a2018 ´ a2017 ď M2018 ´ m2018 “ ∆2018,

and we are interested in an upper bound for ∆2018.

Also by de�nition, for any 0 ă k ď n we have kmn ď Spn, kq ď kMn; noti
e that these

inequalities are also valid for k “ 0.

Claim 1. For every n ą 2, we have ∆n ď n´1
n
∆n´1.

Proof. Choose positive integers k, ℓ ď n su
h that Mn “ Spn, kq{k and mn “ Spn, ℓq{ℓ. We

have Spn, kq “ an´1 ` Spn ´ 1, k ´ 1q, so

kpMn ´ an´1q “ Spn, kq ´ kan´1 “ Spn ´ 1, k ´ 1q ´ pk ´ 1qan´1 ď pk ´ 1qpMn´1 ´ an´1q,

sin
e Spn ´ 1, k ´ 1q ď pk ´ 1qMn´1. Similarly, we get

ℓpan´1 ´ mnq “ pℓ ´ 1qan´1 ´ Spn ´ 1, ℓ ´ 1q ď pℓ ´ 1qpan´1 ´ mn´1q.

Sin
e mn´1 ď an´1 ď Mn´1 and k, ℓ ď n, the obtained inequalities yield

Mn ´ an´1 ď k ´ 1

k
pMn´1 ´ an´1q ď n ´ 1

n
pMn´1 ´ an´1q and

an´1 ´ mn ď ℓ ´ 1

ℓ
pan´1 ´ mn´1q ď n ´ 1

n
pan´1 ´ mn´1q.

Therefore,

∆n “ pMn ´ an´1q ` pan´1 ´ mnq ď n ´ 1

n

`
pMn´1 ´ an´1q ` pan´1 ´ mn´1q

˘
“ n ´ 1

n
∆n´1. l
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Ba
k to the problem, if an “ 1 for all n ď 2017, then a2018 ď 1 and hen
e a2018 ´ a2017 ď 0.

Otherwise, let 2 ď q ď 2017 be the minimal index with aq ă 1. We have Spq, iq “ i for all

i “ 1, 2, . . . , q ´ 1, while Spq, qq “ q ´ 1. Therefore, aq ă 1 yields aq “ Spq, qq{q “ 1 ´ 1
q
.

Now we have Spq ` 1, iq “ i´ 1
q
for i “ 1, 2, . . . , q, and Spq ` 1, q ` 1q “ q ´ 1

q
. This gives us

mq`1 “ Spq ` 1, 1q
1

“ Spq ` 1, q ` 1q
q ` 1

“ q ´ 1

q
and Mq`1 “ Spq ` 1, qq

q
“ q2 ´ 1

q2
,

so ∆q`1 “ Mq`1 ´ mq`1 “ pq ´ 1q{q2. Denoting N “ 2017 ě q and using Claim 1 for

n “ q ` 2, q ` 3, . . . , N ` 1 we �nally obtain

∆N`1 ď q ´ 1

q2
¨ q ` 1

q ` 2
¨ q ` 2

q ` 3
¨ ¨ ¨ N

N ` 1
“ 1

N ` 1

ˆ
1 ´ 1

q2

˙
ď 1

N ` 1

ˆ
1 ´ 1

N2

˙
“ N ´ 1

N2
,

as required.

Comment 1. One may 
he
k that the maximal value of a2018 ´ a2017 is attained at the unique

sequen
e, whi
h is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of |a2018 ´ a2017|. In this

version, the answer

1
2018

is a
hieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2017 “ 1, a2018 “ a2017 ` ¨ ¨ ¨ ` a0

2018
“ 1 ´ 1

2018
.

To prove that this value is optimal, it su�
es to noti
e that ∆2 “ 1
2
and to apply Claim 1 obtaining

|a2018 ´ a2017| ď ∆2018 ď 1

2
¨ 2
3

¨ ¨ ¨ 2017
2018

“ 1

2018
.

Solution 2. We present a di�erent proof of the estimate a2018 ´ a2017 ď 2016
20172

. We keep the

same notations of Spn, kq, mn and Mn from the previous solution.

Noti
e that Spn, nq “ Spn, n ´ 1q, as a0 “ 0. Also noti
e that for 0 ď k ď ℓ ď n we have

Spn, ℓq “ Spn, kq ` Spn ´ k, ℓ ´ kq.
Claim 2. For every positive integer n, we have mn ď mn`1 and Mn`1 ď Mn, so the segment

rmn`1,Mn`1s is 
ontained in rmn,Mns.
Proof. Choose a positive integer k ď n ` 1 su
h that mn`1 “ Spn ` 1, kq{k. Then we have

kmn`1 “ Spn ` 1, kq “ an ` Spn, k ´ 1q ě mn ` pk ´ 1qmn “ kmn,

whi
h establishes the �rst inequality in the Claim. The proof of the se
ond inequality is

similar. l

Claim 3. For every positive integers k ě n, we have mn ď ak ď Mn.

Proof. By Claim 2, we have rmk,Mks Ď rmk´1,Mk´1s Ď ¨ ¨ ¨ Ď rmn,Mns. Sin
e ak P rmk,Mks,
the 
laim follows. l
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Claim 4. For every integer n ě 2, we have Mn “ Spn, n ´ 1q{pn ´ 1q and mn “ Spn, nq{n.
Proof. We use indu
tion on n. The base 
ase n “ 2 is routine. To perform the indu
tion step,

we need to prove the inequalities

Spn, nq
n

ď Spn, kq
k

and

Spn, kq
k

ď Spn, n ´ 1q
n ´ 1

(1)

for every positive integer k ď n. Clearly, these inequalities hold for k “ n and k “ n ´ 1, as

Spn, nq “ Spn, n ´ 1q ą 0. In the sequel, we assume that k ă n ´ 1.

Now the �rst inequality in (1) rewrites as nSpn, kq ě kSpn, nq “ k
`
Spn, kq`Spn´k, n´kq

˘
,

or, 
an
elling the terms o

urring on both parts, as

pn ´ kqSpn, kq ě kSpn ´ k, n ´ kq ðñ Spn, kq ě k ¨ Spn ´ k, n ´ kq
n ´ k

.

By the indu
tion hypothesis, we have Spn ´ k, n ´ kq{pn ´ kq “ mn´k. By Claim 3, we get

an´i ě mn´k for all i “ 1, 2, . . . , k. Summing these k inequalities we obtain

Spn, kq ě kmn´k “ k ¨ Spn ´ k, n ´ kq
n ´ k

,

as required.

The se
ond inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

pn ´ 1qSpn, kq ď kSpn, n ´ 1q ðñ pn ´ k ´ 1qSpn, kq ď kSpn ´ k, n ´ k ´ 1q

ðñ Spn, kq ď k ¨ Spn ´ k, n ´ k ´ 1q
n ´ k ´ 1

“ kMn´k;

the last inequality follows again from Claim 3, as ea
h term in Spn, kq is at most Mn´k. l

Now we 
an prove the required estimate for a2018 ´ a2017. Set N “ 2017. By Claim 4,

aN`1 ´ aN ď MN`1 ´ aN “ SpN ` 1, Nq
N

´ aN “ aN ` SpN,N ´ 1q
N

´ aN

“ SpN,N ´ 1q
N

´ N ´ 1

N
¨ aN .

On the other hand, the same Claim yields

aN ě mN “ SpN,Nq
N

“ SpN,N ´ 1q
N

.

Noti
ing that ea
h term in SpN,N ´ 1q is at most 1, so SpN,N ´ 1q ď N ´ 1, we �nally obtain

aN`1 ´ aN ď SpN,N ´ 1q
N

´ N ´ 1

N
¨ SpN,N ´ 1q

N
“ SpN,N ´ 1q

N2
ď N ´ 1

N2
.

Comment 1. Claim 1 in Solution 1 
an be dedu
ed from Claims 2 and 4 in Solution 2.

By Claim 4 we have Mn “ Spn,n´1q
n´1

and mn “ Spn,nq
n

“ Spn,n´1q
n

. It follows that ∆n “ Mn ´ mn “
Spn,n´1q

pn´1qn and so Mn “ n∆n and mn “ pn ´ 1q∆n

Similarly, Mn´1 “ pn ´ 1q∆n´1 and mn´1 “ pn ´ 2q∆n´1. Then the inequalities mn´1 ď mn and

Mn ď Mn´1 from Claim 2 write as pn´ 2q∆n´1 ď pn´ 1q∆n and n∆n ď pn´ 1q∆n´1. Hen
e we have

the double inequality

n ´ 2

n ´ 1
∆n´1 ď ∆n ď n ´ 1

n
∆n´1.
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Comment 2. Both solutions above dis
uss the properties of an arbitrary sequen
e satisfying the

problem 
onditions. Instead, one may investigate only an optimal sequen
e whi
h maximises the value

of a2018 ´ a2017. Here we present an observation whi
h allows to simplify su
h investigation � for

instan
e, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequen
e panq is uniquely determined by 
hoosing, for every n ě 2, a positive integer kpnq ď n

su
h that an “ Spn, kpnqq{kpnq. Take an arbitrary 2 ď n0 ď 2018, and assume that all su
h inte-

gers kpnq, for n ‰ n0, are �xed. Then, for every n, the value of an is a linear fun
tion in an0
(whose

possible values 
onstitute some dis
rete subset of rmn0
,Mn0

s 
ontaining both endpoints). Hen
e,

a2018 ´ a2017 is also a linear fun
tion in an0
, so it attains its maximal value at one of the endpoints of

the segment rmn0
,Mn0

s.
This shows that, while dealing with an optimal sequen
e, we may assume an P tmn,Mnu for all

2 ď n ď 2018. Now one 
an easily see that, if an “ mn, thenmn`1 “ mn andMn`1 ď mn`nMn

n`1
; similar

estimates hold in the 
ase an “ Mn. This already establishes Claim 1, and simpli�es the indu
tive

proof of Claim 4, both applied to an optimal sequen
e.
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A5.

Determine all fun
tions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯
p1q

for all x, y ą 0.

(South Korea)

Answer: fpxq “ C1x ` C2

x
with arbitrary 
onstants C1 and C2.

Solution 1. Fix a real number a ą 1, and take a new variable t. For the values fptq, fpt2q,
fpatq and fpa2t2q, the relation (1) provides a system of linear equations:

x “ y “ t :

ˆ
t ` 1

t

˙
fptq “ fpt2q ` fp1q (2a)

x “ t

a
, y “ at :

ˆ
t

a
` a

t

˙
fpatq “ fpt2q ` fpa2q (2b)

x “ a2t, y “ t :

ˆ
a2t ` 1

a2t

˙
fptq “ fpa2t2q ` f

ˆ
1

a2

˙
(2
)

x “ y “ at :

ˆ
at ` 1

at

˙
fpatq “ fpa2t2q ` fp1q (2d)

In order to eliminate fpt2q, take the di�eren
e of (2a) and (2b); from (2
) and (2d) eliminate

fpa2t2q; then by taking a linear 
ombination, eliminate fpatq as well:
ˆ
t ` 1

t

˙
fptq ´

ˆ
t

a
` a

t

˙
fpatq “ fp1q ´ fpa2q and

ˆ
a2t ` 1

a2t

˙
fptq ´

ˆ
at ` 1

at

˙
fpatq “ fp1{a2q ´ fp1q, so

˜ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙¸

fptq

“
ˆ
at ` 1

at

˙`
fp1q ´ fpa2q

˘
´
ˆ
t

a
` a

t

˙`
fp1{a2q ´ fp1q

˘
.

Noti
e that on the left-hand side, the 
oe�
ient of fptq is nonzero and does not depend on t:

ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙
“ a ` 1

a
´
ˆ
a3 ` 1

a3

˙
ă 0.

After dividing by this �xed number, we get

fptq “ C1t ` C2

t
p3q

where the numbers C1 and C2 are expressed in terms of a, fp1q, fpa2q and fp1{a2q, and they

do not depend on t.

The fun
tions of the form (3) satisfy the equation:

ˆ
x ` 1

x

˙
fpyq “

ˆ
x ` 1

x

˙ˆ
C1y ` C2

y

˙
“
ˆ
C1xy ` C2

xy

˙
`
ˆ
C1

y

x
` C2

x

y

˙
“ fpxyq ` f

´y
x

¯
.
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Solution 2. We start with an observation. If we substitute x “ a ‰ 1 and y “ an in (1), we

obtain

fpan`1q ´
ˆ
a ` 1

a

˙
fpanq ` fpan´1q “ 0.

For the sequen
e zn “ an, this is a homogeneous linear re
urren
e of the se
ond order, and its


hara
teristi
 polynomial is t2 ´
`
a ` 1

a

˘
t ` 1 “ pt ´ aqpt ´ 1

a
q with two distin
t nonzero roots,

namely a and 1{a. As is well-known, the general solution is zn “ C1a
n ` C2p1{aqn where the

index n 
an be as well positive as negative. Of 
ourse, the numbers C1 and C2 may depend of

the 
hoi
e of a, so in fa
t we have two fun
tions, C1 and C2, su
h that

fpanq “ C1paq ¨ an ` C2paq
an

for every a ‰ 1 and every integer n. p4q

The relation (4) 
an be easily extended to rational values of n, so we may 
onje
ture that C1

and C2 are 
onstants, and when
e fptq “ C1t ` C2

t
. As it was seen in the previous solution,

su
h fun
tions indeed satisfy (1).

The equation (1) is linear in f ; so if some fun
tions f1 and f2 satisfy (1) and c1, c2 are real

numbers, then c1f1pxq`c2f2pxq is also a solution of (1). In order to make our formulas simpler,

de�ne

f0pxq “ fpxq ´ fp1q ¨ x.
This fun
tion is another one satisfying (1) and the extra 
onstraint f0p1q “ 0. Repeating the

same argument on linear re
urren
es, we 
an write f0paq “ Kpaqan ` Lpaq
an

with some fun
tions

K and L. By substituting n “ 0, we 
an see that Kpaq ` Lpaq “ f0p1q “ 0 for every a. Hen
e,

f0panq “ Kpaq
ˆ
an ´ 1

an

˙
.

Now take two numbers a ą b ą 1 arbitrarily and substitute x “ pa{bqn and y “ pabqn in (1):

ˆ
an

bn
` bn

an

˙
f0
`
pabqn

˘
“ f0

`
a2n

˘
` f0

`
b2n

˘
, so

ˆ
an

bn
` bn

an

˙
Kpabq

ˆ
pabqn ´ 1

pabqn
˙

“ Kpaq
ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
, or equivalently

Kpabq
ˆ
a2n ´ 1

a2n
` b2n ´ 1

b2n

˙
“ Kpaq

ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
. (5)

By dividing (5) by a2n and then taking limit with n Ñ `8 we get Kpabq “ Kpaq. Then (5)

redu
es to Kpaq “ Kpbq. Hen
e, Kpaq “ Kpbq for all a ą b ą 1.

Fix a ą 1. For every x ą 0 there is some b and an integer n su
h that 1 ă b ă a and x “ bn.

Then

f0pxq “ f0pbnq “ Kpbq
ˆ
bn ´ 1

bn

˙
“ Kpaq

ˆ
x ´ 1

x

˙
.

Hen
e, we have fpxq “ f0pxq ` fp1qx “ C1x ` C2

x
with C1 “ Kpaq ` fp1q and C2 “ ´Kpaq.

Comment. After establishing (5), there are several variants of �nishing the solution. For example,

instead of taking a limit, we 
an obtain a system of linear equations for Kpaq, Kpbq and Kpabq by

substituting two positive integers n in (5), say n “ 1 and n “ 2. This approa
h leads to a similar

ending as in the �rst solution.

Optionally, we de�ne another fun
tion f1pxq “ f0pxq ´ C
`
x ´ 1

x

˘
and pres
ribe Kpcq “ 0 for

another �xed c. Then we 
an 
hoose ab “ c and de
rease the number of terms in (5).
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A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real 
oe�
ients su
h

that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

Solution. We transform the problem to a single variable question by the following

Lemma. Let a1, . . . , an be nonnegative integers and let Gpxq be a nonzero polynomial with

degG ď a1 ` . . . ` an. Suppose that some polynomial F px1, . . . , xnq satis�es

F px1, . . . , xnq “ Gpx1 ` . . . ` xnq for px1, . . . , xnq P t0, 1, . . . , a1u ˆ . . . ˆ t0, 1, . . . , anu.

Then F 
annot be the zero polynomial, and degF ě degG.

For proving the lemma, we will use forward di�eren
es of polynomials. If ppxq is a polyno-

mial with a single variable, then de�ne p∆pqpxq “ ppx ` 1q ´ ppxq. It is well-known that if p is

a non
onstant polynomial then deg∆p “ deg p ´ 1.

If ppx1, . . . , xnq is a polynomial with n variables and 1 ď k ď n then let

p∆kpqpx1, . . . , xnq “ ppx1, . . . , xk´1, xk ` 1, xk`1, . . . , xnq ´ ppx1, . . . , xnq.

It is also well-known that either ∆kp is the zero polynomial or degp∆kpq ď deg p ´ 1.

Proof of the lemma. We apply indu
tion on the degree of G. If G is a 
onstant polynomial

then we have F p0, . . . , 0q “ Gp0q ‰ 0, so F 
annot be the zero polynomial.

Suppose that degG ě 1 and the lemma holds true for lower degrees. Sin
e a1 ` . . . ` an ě
degG ą 0, at least one of a1, . . . , an is positive; without loss of generality suppose a1 ě 1.

Consider the polynomials F1 “ ∆1F andG1 “ ∆G. On the grid t0, . . . , a1´1uˆt0, . . . , a2uˆ
. . . ˆ t0, . . . , anu we have

F1px1, . . . , xnq “ F px1 ` 1, x2, . . . , xnq ´ F px1, x2, . . . , xnq “
“ Gpx1 ` . . . ` xn ` 1q ´ Gpx1 ` . . . ` xnq “ G1px1 ` . . . ` xnq.

Sin
e G is non
onstant, we have degG1 “ degG´1 ď pa1 ´1q`a2 ` . . .`an. Therefore we 
an

apply the indu
tion hypothesis to F1 and G1 and 
on
lude that F1 is not the zero polynomial

and degF1 ě degG1. Hen
e, deg F ě degF1 ` 1 ě degG1 ` 1 “ degG. That �nishes the

proof. l

To prove the problem statement, take the unique polynomial gpxq so that gpxq “
X
x
m

\
for

x P
 
0, 1, . . . , npm ´ 1q

(
and deg g ď npm ´ 1q. Noti
e that pre
isely npm ´ 1q ` 1 values

of g are pres
ribed, so gpxq indeed exists and is unique. Noti
e further that the 
onstraints

gp0q “ gp1q “ 0 and gpmq “ 1 together enfor
e deg g ě 2.

By applying the lemma to a1 “ . . . “ an “ m ´ 1 and the polynomials f and g, we a
hieve

deg f ě deg g. Hen
e we just need a suitable lower bound on deg g.

Consider the polynomial hpxq “ gpx ` mq ´ gpxq ´ 1. The degree of gpx ` mq ´ gpxq is

deg g ´ 1 ě 1, so deg h “ deg g ´ 1 ě 1, and therefore h 
annot be the zero polynomial. On the

other hand, h vanishes at the points 0, 1, . . . , npm ´ 1q ´ m, so h has at least pn ´ 1qpm ´ 1q
roots. Hen
e,

deg f ě deg g “ deg h ` 1 ě pn ´ 1qpm ´ 1q ` 1 ě n.
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Comment 1. In the lemma we have equality for the 
hoi
e F px1, . . . , xnq “ Gpx1 ` . . . ` xnq, so it

indeed transforms the problem to an equivalent single-variable question.

Comment 2. If m ě 3, the polynomial hpxq 
an be repla
ed by ∆g. Noti
e that

p∆gqpxq “
#
1 if x ” ´1 pmod mq
0 otherwise

for x “ 0, 1, . . . , npm ´ 1q ´ 1.

Hen
e, ∆g vanishes at all integers x with 0 ď x ă npm ´ 1q and x ı ´1 pmod mq. This leads to

deg g ě pm´1q2n
m

` 1.

If m is even then this lower bound 
an be improved to npm ´ 1q. For 0 ď N ă npm ´ 1q, the
pN ` 1qst forward di�eren
e at x “ 0 is

`
∆N`1

˘
gp0q “

Nÿ

k“0

p´1qN´k

ˆ
N

k

˙
p∆gqpkq “

ÿ

0ďkďN
k”´1 pmod mq

p´1qN´k

ˆ
N

k

˙
. p˚q

Sin
e m is even, all signs in the last sum are equal; with N “ npm´1q´1 this proves ∆npm´1qgp0q ‰ 0,

indi
ating that deg g ě npm ´ 1q.
However, there are in�nitely many 
ases when all terms in p˚q 
an
el out, for example if m is an

odd divisor of n ` 1. In su
h 
ases, deg f 
an be less than npm ´ 1q.

Comment 3. The lemma is 
losely related to the so-
alled

Alon�Füredi bound. Let S1, . . . , Sn be nonempty �nite sets in a �eld and suppose that

the polynomial P px1, . . . , xnq vanishes at the points of the grid S1 ˆ . . . ˆ Sn, ex
ept for a

single point. Then degP ě
nř

i“1

`
|Si| ´ 1

˘
.

(A well-known appli
ation of the Alon�Füredi bound was the former IMO problem 2007/6.

Sin
e then, this result be
ame popular among the students and is part of the IMO training

for many IMO teams.)

The proof of the lemma 
an be repla
ed by an appli
ation of the Alon�Füredi bound as follows. Let

d “ degG, and let G0 be the unique polynomial su
h that G0pxq “ Gpxq for x P
 
0, 1, . . . , d ´ 1

(
but

degG0 ă d. The polynomials G0 and G are di�erent be
ause they have di�erent degrees, and they

attain the same values at 0, 1, . . . , d ´ 1; that enfor
es G0pdq ‰ Gpdq.
Choose some nonnegative integers b1, . . . , bn so that b1 ď a1, . . . , bn ď an, and b1 ` . . . ` bn “ d,

and 
onsider the polynomial

Hpx1, . . . , xnq “ F px1, . . . , xnq ´ G0px1 ` . . . ` xnq

on the grid

 
0, 1, . . . , b1

(
ˆ . . . ˆ

 
0, 1, . . . , bn

(
.

At the point pb1, . . . , bnq we have Hpb1, . . . , bnq “ Gpdq ´ G0pdq ‰ 0. At all other points of the grid

we have F “ G and thereforeH “ G´G0 “ 0. So, by the Alon�Füredi bound, degH ě b1`. . .`bn “ d.

Sin
e degG0 ă d, this implies degF “ degpH ` G0q “ degH ě d “ degG. l
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A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whi
h satisfy a ` b ` c ` d “ 100.

(Taiwan)

Answer:

8
3
?
7
, rea
hed when pa, b, c, dq is a 
y
li
 permutation of p1, 49, 1, 49q.

Solution 1. Sin
e the value 8{ 3
?
7 is rea
hed, it su�
es to prove that S ď 8{ 3

?
7.

Assume that x, y, z, t is a permutation of the variables, with x ď y ď z ď t. Then, by the

rearrangement inequality,

S ď
˜

3

c
x

t ` 7
` 3

c
t

x ` 7

¸

`
ˆ

3

c
y

z ` 7
` 3

c
z

y ` 7

˙
.

Claim. The �rst bra
ket above does not ex
eed

3

c
x ` t ` 14

7
.

Proof. Sin
e

X3 ` Y 3 ` 3XY Z ´ Z3 “ 1

2
pX ` Y ´ Zq

`
pX ´ Y q2 ` pX ` Zq2 ` pY ` Zq2

˘
,

the inequality X ` Y ď Z is equivalent (when X, Y, Z ě 0) to X3 ` Y 3 ` 3XY Z ď Z3
.

Therefore, the 
laim is equivalent to

x

t ` 7
` t

x ` 7
` 3

3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q ď x ` t ` 14

7
.

Noti
e that

3
3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q “ 3

3

d
tpx ` 7q
7pt ` 7q ¨ xpt ` 7q

7px ` 7q ¨ 7px ` t ` 14q
pt ` 7qpx ` 7q

ď tpx ` 7q
7pt ` 7q ` xpt ` 7q

7px ` 7q ` 7px ` t ` 14q
pt ` 7qpx ` 7q

by the AM�GM inequality, so it su�
es to prove

x

t ` 7
` t

x ` 7
` tpx ` 7q

7pt ` 7q ` xpt ` 7q
7px ` 7q ` 7px ` t ` 14q

pt ` 7qpx ` 7q ď x ` t ` 14

7
.

A straightforward 
he
k veri�es that the last inequality is in fa
t an equality. l

The 
laim leads now to

S ď 3

c
x ` t ` 14

7
` 3

c
y ` z ` 14

7
ď 2

3

c
x ` y ` z ` t ` 28

14
“ 8

3
?
7
,

the last inequality being due to the AM�CM inequality (or to the fa
t that

3
?

is 
on
ave on

r0,8q).
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Solution 2. We present a di�erent proof for the estimate S ď 8{ 3
?
7.

Start by using Hölder's inequality:

S3 “
˜
ÿ

cyc

6
?
a ¨ 6

?
a

3
?
b ` 7

¸3

ď
ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

ˆ
1

3
?
b ` 7

˙3

“
˜
ÿ

cyc

?
a

¸2ÿ

cyc

1

b ` 7
.

Noti
e that

px ´ 1q2px ´ 7q2
x2 ` 7

ě 0 ðñ x2 ´ 16x ` 71 ě 448

x2 ` 7

yields

ÿ 1

b ` 7
ď 1

448

ÿ`
b ´ 16

?
b ` 71

˘
“ 1

448

´
384 ´ 16

ÿ?
b
¯

“ 48 ´ 2
ř?

b

56
.

Finally,

S3 ď 1

56

´ÿ?
a
¯2 ´

48 ´ 2
ÿ?

a
¯

ď 1

56

˜ř?
a ` ř?

a `
`
48 ´ 2

ř?
a
˘

3

¸3

“ 512

7

by the AM�GM inequality. The 
on
lusion follows.

Comment. All the above works if we repla
e 7 and 100 with k ą 0 and 2pk2 ` 1q, respe
tively; in this


ase, the answer be
omes

2
3

c
pk ` 1q2

k
.

Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being

repla
ed with arbitrary positive real numbers p and q satisfying q ě 4p.



24 Cluj-Napo
a � Romania, 3�14 July 2018

Combinatori
s

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S 
an be partitioned into

two subsets with equal sums of elements, with one of subsets of 
ardinality m.

(I
eland)

Solution. We show that one of possible examples is the set

S “ t1 ¨ 3k, 2 ¨ 3k : k “ 1, 2, . . . , n ´ 1u Y
"
1,

3n ` 9

2
´ 1

*
.

It is readily veri�ed that all the numbers listed above are distin
t (noti
e that the last two are

not divisible by 3).

The sum of elements in S is

Σ “ 1 `
ˆ
3n ` 9

2
´ 1

˙
`

n´1ÿ

k“1

p1 ¨ 3k ` 2 ¨ 3kq “ 3n ` 9

2
`

n´1ÿ

k“1

3k`1 “ 3n ` 9

2
` 3n`1 ´ 9

2
“ 2 ¨ 3n.

Hen
e, in order to show that this set satis�es the problem requirements, it su�
es to present,

for every m “ 2, 3, . . . , n, an m-element subset Am Ă S whose sum of elements equals 3n.

Su
h a subset is

Am “ t2 ¨ 3k : k “ n ´ m ` 1, n ´ m ` 2, . . . , n ´ 1u Y t1 ¨ 3n´m`1u.

Clearly, |Am| “ m. The sum of elements in Am is

3n´m`1 `
n´1ÿ

k“n´m`1

2 ¨ 3k “ 3n´m`1 ` 2 ¨ 3n ´ 2 ¨ 3n´m`1

2
“ 3n,

as required.

Comment. Let us present a more general 
onstru
tion. Let s1, s2, . . . , s2n´1 be a sequen
e of pairwise

distin
t positive integers satisfying s2i`1 “ s2i ` s2i´1 for all i “ 2, 3, . . . , n ´ 1. Set s2n “ s1 ` s2 `
¨ ¨ ¨ ` s2n´4.

Assume that s2n is distin
t from the other terms of the sequen
e. Then the set S “ ts1, s2, . . . , s2nu
satis�es the problem requirements. Indeed, the sum of its elements is

Σ “
2n´4ÿ

i“1

si ` ps2n´3 ` s2n´2q ` s2n´1 ` s2n “ s2n ` s2n´1 ` s2n´1 ` s2n “ 2s2n ` 2s2n´1.

Therefore, we have

Σ

2
“ s2n ` s2n´1 “ s2n ` s2n´2 ` s2n´3 “ s2n ` s2n´2 ` s2n´4 ` s2n´5 “ . . . ,

whi
h shows that the required sets Am 
an be 
hosen as

Am “ ts2n, s2n´2, . . . , s2n´2m`4, s2n´2m`3u.

So, the only 
ondition to be satis�ed is s2n R ts1, s2, . . . , s2n´1u, whi
h 
an be a
hieved in many

di�erent ways (e.g., by 
hoosing properly the number s1 after spe
ifying s2, s3, . . . , s2n´1).

The solution above is an instan
e of this general 
onstru
tion. Another instan
e, for n ą 3, is the

set

tF1, F2, . . . , F2n´1, F1 ` ¨ ¨ ¨ ` F2n´4u,
where F1 “ 1, F2 “ 2, Fn`1 “ Fn ` Fn´1 is the usual Fibona

i sequen
e.
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C2.

Queenie and Horst play a game on a 20 ˆ 20 
hessboard. In the beginning the board

is empty. In every turn, Horst pla
es a bla
k knight on an empty square in su
h a way that his

new knight does not atta
k any previous knights. Then Queenie pla
es a white queen on an

empty square. The game gets �nished when somebody 
annot move.

Find the maximal positive K su
h that, regardless of the strategy of Queenie, Horst 
an

put at least K knights on the board.

(Armenia)

Answer: K “ 202{4 “ 100. In 
ase of a 4N ˆ 4M board, the answer is K “ 4NM .

Solution. We show two strategies, one for Horst to pla
e at least 100 knights, and another

strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on bla
k squares, until all bla
k squares get

o

upied.

Colour the squares of the board bla
k and white in the usual way, su
h that the white

and bla
k squares alternate, and let Horst put his knights on bla
k squares as long as it is

possible. Two knights on squares of the same 
olour never atta
k ea
h other. The number of

bla
k squares is 202{2 “ 200. The two players o

upy the squares in turn, so Horst will surely

�nd empty bla
k squares in his �rst 100 steps.

A strategy for Queenie: Group the squares into 
y
les of length 4, and after ea
h step

of Horst, o

upy the opposite square in the same 
y
le.

Consider the squares of the board as verti
es of a graph; let two squares be 
onne
ted if

two knights on those squares would atta
k ea
h other. Noti
e that in a 4ˆ 4 board the squares


an be grouped into 4 
y
les of length 4, as shown in Figure 1. Divide the board into parts of

size 4 ˆ 4, and perform the same grouping in every part; this way we arrange the 400 squares

of the board into 100 
y
les (Figure 2).

D

B

A C

Figure 1 Figure 2 Figure 3

The strategy of Queenie 
an be as follows: Whenever Horst puts a new knight to a 
ertain

square A, whi
h is part of some 
y
le A ´ B ´ C ´ D ´ A, let Queenie put her queen on the

opposite square C in that 
y
le (Figure 3). From this point, Horst 
annot put any knight on

A or C be
ause those squares are already o

upied, neither on B or D be
ause those squares

are atta
ked by the knight standing on A. Hen
e, Horst 
an put at most one knight on ea
h


y
le, that is at most 100 knights in total.

Comment 1. Queenie's strategy 
an be pres
ribed by a simple rule: divide the board into 4 ˆ 4

parts; whenever Horst puts a knight in a part P , Queenie re�e
ts that square about the 
entre of P

and puts her queen on the re�e
ted square.

Comment 2. The result remains the same if Queenie moves �rst. In the �rst turn, she may put

her �rst queen arbitrarily. Later, if she has to put her next queen on a square that already 
ontains a

queen, she may move arbitrarily again.
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C3.

Let n be a given positive integer. Sisyphus performs a sequen
e of turns on a board


onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus 
hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus 
annot rea
h the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same �nal

position. So, at any turn we 
an pres
ribe whi
h stone from the 
hosen square to move. We

do it in the following manner. Number the stones from 1 to n. At any turn, after 
hoosing a

square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square 
ontains not more than k

stones (sin
e all their numbers are at most k). Therefore, stone k is moved by at most k squares

at ea
h turn. Sin
e the total shift of the stone is exa
tly n, at least rn{ks moves of stone k

should have been made, for every k “ 1, 2, . . . , n.

By summing up over all k “ 1, 2, . . . , n, we get the required estimate.

Comment. The original submission 
ontained the se
ond part, asking for whi
h values of n the equality


an be a
hieved. The answer is n “ 1, 2, 3, 4, 5, 7. The Problem Sele
tion Committee 
onsidered this

part to be less suitable for the 
ompetition, due to te
hni
alities.
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C4.

An anti-Pas
al pyramid is a �nite set of numbers, pla
ed in a triangle-shaped array

so that the �rst row of the array 
ontains one number, the se
ond row 
ontains two numbers,

the third row 
ontains three numbers and so on; and, ex
ept for the numbers in the bottom

row, ea
h number equals the absolute value of the di�eren
e of the two numbers below it. For

instan
e, the triangle below is an anti-Pas
al pyramid with four rows, in whi
h every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 o

urs exa
tly on
e:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pas
al pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exa
tly on
e?

(Iran)

Answer: No, it is not possible.

Solution. Let T be an anti-Pas
al pyramid with n rows, 
ontaining every integer from 1 to

1`2`¨ ¨ ¨`n, and let a1 be the topmost number in T (Figure 1). The two numbers below a1 are

some a2 and b2 “ a1 ` a2, the two numbers below b2 are some a3 and b3 “ a1 ` a2 ` a3, and so

on and so forth all the way down to the bottom row, where some an and bn “ a1 `a2 ` ¨ ¨ ¨ `an
are the two neighbours below bn´1 “ a1 ` a2 ` ¨ ¨ ¨ ` an´1. Sin
e the ak are n pairwise distin
t

positive integers whose sum does not ex
eed the largest number in T , whi
h is 1 ` 2 ` ¨ ¨ ¨ ` n,

it follows that they form a permutation of 1, 2, . . . , n.

a
1

a
2

b
2

an-1

bn

a
3

b
3

bn-1

an

..................
T

T’ T’’

Figure 1 Figure 2

Consider now (Figure 2) the two `equilateral' subtriangles of T whose bottom rows 
ontain

the numbers to the left, respe
tively right, of the pair an, bn. (One of these subtriangles may

very well be empty.) At least one of these subtriangles, say T 1
, has side length ℓ ě rpn ´ 2q{2s.

Sin
e T 1
obeys the anti-Pas
al rule, it 
ontains ℓ pairwise distin
t positive integers a1

1, a
1
2, . . . , a

1
ℓ,

where a1
1 is at the apex, and a1

k and b1
k “ a1

1 `a1
2 `¨ ¨ ¨`a1

k are the two neighbours below b1
k´1 for

ea
h k “ 2, 3 . . . , ℓ. Sin
e the ak all lie outside T 1
, and they form a permutation of 1, 2, . . . , n,

the a1
k are all greater than n. Consequently,

b1
ℓ ě pn ` 1q ` pn ` 2q ` ¨ ¨ ¨ ` pn ` ℓq “ ℓp2n ` ℓ ` 1q

2

ě 1

2
¨ n ´ 2

2

ˆ
2n ` n ´ 2

2
` 1

˙
“ 5npn ´ 2q

8
,

whi
h is greater than 1 ` 2 ` ¨ ¨ ¨ ` n “ npn ` 1q{2 for n “ 2018. A 
ontradi
tion.

Comment. The above estimate may be slightly improved by noti
ing that b1
ℓ ‰ bn. This implies

npn ` 1q{2 “ bn ą b1
ℓ ě rpn ´ 2q{2s p2n ` rpn ´ 2q{2s ` 1q {2, so n ď 7 if n is odd, and n ď 12 if n is

even. It seems that the largest anti-Pas
al pyramid whose entries are a permutation of the integers

from 1 to 1 ` 2 ` ¨ ¨ ¨ ` n has 5 rows.



28 Cluj-Napo
a � Romania, 3�14 July 2018

C5.

Let k be a positive integer. The organising 
ommittee of a tennis tournament is to

s
hedule the mat
hes for 2k players so that every two players play on
e, ea
h day exa
tly one

mat
h is played, and ea
h player arrives to the tournament site the day of his �rst mat
h, and

departs the day of his last mat
h. For every day a player is present on the tournament, the


ommittee has to pay 1 
oin to the hotel. The organisers want to design the s
hedule so as to

minimise the total 
ost of all players' stays. Determine this minimum 
ost.

(Russia)

Answer: The required minimum is kp4k2 ` k ´ 1q{2.
Solution 1. Enumerate the days of the tournament 1, 2, . . . ,

`
2k

2

˘
. Let b1 ď b2 ď ¨ ¨ ¨ ď b2k be

the days the players arrive to the tournament, arranged in nonde
reasing order; similarly, let

e1 ě ¨ ¨ ¨ ě e2k be the days they depart arranged in nonin
reasing order (it may happen that a

player arrives on day bi and departs on day ej , where i ‰ j). If a player arrives on day b and

departs on day e, then his stay 
ost is e ´ b ` 1. Therefore, the total stay 
ost is

Σ “
2kÿ

i“1

ei ´
2kÿ

i“1

bi ` n “
2kÿ

i“1

pei ´ bi ` 1q.

Bounding the total 
ost from below. To this end, estimate ei`1 ´ bi`1 ` 1. Before day bi`1,

only i players were present, so at most

`
i

2

˘
mat
hes 
ould be played. Therefore, bi`1 ď

`
i

2

˘
` 1.

Similarly, at most

`
i

2

˘
mat
hes 
ould be played after day ei`1, so ei ě

`
2k

2

˘
´
`
i

2

˘
. Thus,

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
“ kp2k ´ 1q ´ ipi ´ 1q.

This lower bound 
an be improved for i ą k : List the i players who arrived �rst, and

the i players who departed last; at least 2i ´ 2k players appear in both lists. The mat
hes

between these players were 
ounted twi
e, though the players in ea
h pair have played only

on
e. Therefore, if i ą k, then

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
`
ˆ
2i ´ 2k

2

˙
“ p2k ´ iq2.

An optimal tournament, We now des
ribe a s
hedule in whi
h the lower bounds above are all

a
hieved simultaneously. Split players into two groups X and Y , ea
h of 
ardinality k. Next,

partition the s
hedule into three parts. During the �rst part, the players from X arrive one by

one, and ea
h newly arrived player immediately plays with everyone already present. During

the third part (after all players from X have already departed) the players from Y depart one

by one, ea
h playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y . Let S1, S2, . . . , Sk

be the players in X , and let T1, T2, . . . , Tk be the players in Y . Let T1, T2, . . . , Tk arrive in

this order; after Tj arrives, he immediately plays with all the Si, i ą j. Afterwards, players Sk,

Sk´1, . . . , S1 depart in this order; ea
h Si plays with all the Tj , i ď j, just before his departure,

and Sk departs the day Tk arrives. For 0 ď s ď k ´ 1, the number of mat
hes played between

Tk´s's arrival and Sk´s's departure is

k´1ÿ

j“k´s

pk ´ jq ` 1 `
k´1ÿ

j“k´s

pk ´ j ` 1q “ 1

2
sps ` 1q ` 1 ` 1

2
sps ` 3q “ ps ` 1q2.

Thus, if i ą k, then the number of mat
hes that have been played between Ti´k`1's arrival,

whi
h is bi`1, and Si´k`1's departure, whi
h is ei`1, is p2k´iq2; that is, ei`1´bi`1`1 “ p2k´iq2,
showing the se
ond lower bound a
hieved for all i ą k.
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If i ď k, then the mat
hes between the i players present before bi`1 all fall in the �rst part

of the s
hedule, so there are

`
i

2

˘
su
h, and bi`1 “

`
i

2

˘
` 1. Similarly, after ei`1, there are i

players left, all

`
i

2

˘
mat
hes now fall in the third part of the s
hedule, and ei`1 “

`
2k

2

˘
´
`
i

2

˘
.

The �rst lower bound is therefore also a
hieved for all i ď k.

Consequently, all lower bounds are a
hieved simultaneously, and the s
hedule is indeed

optimal.

Evaluation. Finally, evaluate the total 
ost for the optimal s
hedule:

Σ “
kÿ

i“0

`
kp2k ´ 1q ´ ipi ´ 1q

˘
`

2k´1ÿ

i“k`1

p2k ´ iq2 “ pk ` 1qkp2k ´ 1q ´
kÿ

i“0

ipi ´ 1q `
k´1ÿ

j“1

j2

“ kpk ` 1qp2k ´ 1q ´ k2 ` 1

2
kpk ` 1q “ 1

2
kp4k2 ` k ´ 1q.

Solution 2. Consider any tournament s
hedule. Label players P1, P2, . . . , P2k in order of

their arrival, and label them again Q2k, Q2k´1, . . ., Q1 in order of their departure, to de�ne a

permutation a1, a2, . . . , a2k of 1, 2, . . . , 2k by Pi “ Qai .

We �rst des
ribe an optimal tournament for any given permutation a1, a2, . . . , a2k of the

indi
es 1, 2, . . . , 2k. Next, we �nd an optimal permutation and an optimal tournament.

Optimisation for a �xed a1, . . . , a2k. We say that the 
ost of the mat
h between Pi and Pj

is the number of players present at the tournament when this mat
h is played. Clearly, the

Committee pays for ea
h day the 
ost of the mat
h of that day. Hen
e, we are to minimise the

total 
ost of all mat
hes.

Noti
e that Q2k's departure does not pre
ede P2k's arrival. Hen
e, the number of play-

ers at the tournament monotoni
ally in
reases (non-stri
tly) until it rea
hes 2k, and then

monotoni
ally de
reases (non-stri
tly). So, the best time to s
hedule the mat
h between Pi

and Pj is either when Pmaxpi,jq arrives, or when Qmaxpai,ajq departs, in whi
h 
ase the 
ost is

min
`
maxpi, jq,maxpai, ajq

˘
.

Conversely, assuming that i ą j, if this mat
h is s
heduled between the arrivals of Pi and

Pi`1, then its 
ost will be exa
tly i “ maxpi, jq. Similarly, one 
an make it 
ost maxpai, ajq.
Obviously, these 
onditions 
an all be simultaneously satis�ed, so the minimal 
ost for a �xed

sequen
e a1, a2, . . . , a2k is

Σpa1, . . . , a2kq “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxpai, ajq

˘
. (1)

Optimising the sequen
e paiq. Optimisation hinges on the lemma below.

Lemma. If a ď b and c ď d, then

min
`
maxpa, xq,maxpc, yq

˘
` min

`
maxpb, xq,maxpd, yq

˘

ě min
`
maxpa, xq,maxpd, yq

˘
` min

`
maxpb, xq,maxpc, yq

˘
.

Proof. Write a1 “ maxpa, xq ď maxpb, xq “ b1
and c1 “ maxpc, yq ď maxpd, yq “ d1

and 
he
k

that minpa1, c1q ` minpb1, d1q ě minpa1, d1q ` minpb1, c1q. l

Consider a permutation a1, a2, . . . , a2k su
h that ai ă aj for some i ă j. Swapping ai
and aj does not 
hange the pi, jqth summand in (1), and for ℓ R ti, ju the sum of the pi, ℓqth
and the pj, ℓqth summands does not in
rease by the Lemma. Hen
e the optimal value does not

in
rease, but the number of disorders in the permutation in
reases. This pro
ess stops when

ai “ 2k ` 1 ´ i for all i, so the required minimum is

Sp2k, 2k ´ 1, . . . , 1q “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxp2k ` 1 ´ i, 2k ` 1 ´ jq

˘

“
ÿ

1ďiăjď2k

minpj, 2k ` 1 ´ iq.
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The latter sum is fairly tra
table and yields the stated result; we omit the details.

Comment. If the number of players is odd, say, 2k ´ 1, the required minimum is kpk ´ 1qp4k ´ 1q{2.
In this 
ase, |X| “ k, |Y | “ k ´ 1, the argument goes along the same lines, but some additional

te
hni
alities are to be taken 
are of.
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C6.

Let a and b be distin
t positive integers. The following in�nite pro
ess takes pla
e on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we 
hoose su
h a pair and

in
rease one of its 
omponents by a and the other by b.

piiq If no su
h pair exists, we write down two times the number 0.

Prove that, no matter how we make the 
hoi
es in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

Solution 1. We may assume gcdpa, bq “ 1; otherwise we work in the same way with multiples

of d “ gcdpa, bq.
Suppose that after N moves of type piiq and some moves of type piq we have to add two

new zeros. For ea
h integer k, denote by fpkq the number of times that the number k appeared

on the board up to this moment. Then fp0q “ 2N and fpkq “ 0 for k ă 0. Sin
e the board


ontains at most one k ´ a, every se
ond o

urren
e of k ´ a on the board produ
ed, at some

moment, an o

urren
e of k; the same stands for k ´ b. Therefore,

fpkq “
Z
fpk ´ aq

2

^
`
Z
fpk ´ bq

2

^
, p1q

yielding

fpkq ě fpk ´ aq ` fpk ´ bq
2

´ 1. p2q

Sin
e gcdpa, bq “ 1, every integer x ą ab ´ a ´ b is expressible in the form x “ sa ` tb, with

integer s, t ě 0.

We will prove by indu
tion on s ` t that if x “ sa ` bt, with s, t nonnegative integers, then

fpxq ą fp0q
2s`t

´ 2. p3q

The base 
ase s`t “ 0 is trivial. Assume now that p3q is true for s`t “ v. Then, if s`t “ v`1

and x “ sa ` tb, at least one of the numbers s and t � say s � is positive, hen
e by p2q,

fpxq “ fpsa ` tbq ě f
`
ps ´ 1qa ` tb

˘

2
´ 1 ą 1

2

ˆ
fp0q
2s`t´1

´ 2

˙
´ 1 “ fp0q

2s`t
´ 2.

Assume now that we must perform moves of type piiq ad in�nitum. Take n “ ab´a´ b and

suppose b ą a. Sin
e ea
h of the numbers n ` 1, n ` 2, . . . , n ` b 
an be expressed in the form

sa ` tb, with 0 ď s ď b and 0 ď t ď a, after moves of type piiq have been performed 2a`b`1

times and we have to add a new pair of zeros, ea
h fpn ` kq, k “ 1, 2, . . . , b, is at least 2. In

this 
ase p1q yields indu
tively fpn ` kq ě 2 for all k ě 1. But this is absurd: after a �nite

number of moves, f 
annot attain nonzero values at in�nitely many points.

Solution 2. We start by showing that the result of the pro
ess in the problem does not

depend on the way the operations are performed. For that purpose, it is 
onvenient to modify

the pro
ess a bit.

Claim 1. Suppose that the board initially 
ontains a �nite number of nonnegative integers,

and one starts performing type piq moves only. Assume that one had applied k moves whi
h led

to a �nal arrangement where no more type piq moves are possible. Then, if one starts from the

same initial arrangement, performing type piq moves in an arbitrary fashion, then the pro
ess

will ne
essarily stop at the same �nal arrangement
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Proof. Throughout this proof, all moves are supposed to be of type piq.
Indu
t on k; the base 
ase k “ 0 is trivial, sin
e no moves are possible. Assume now that

k ě 1. Fix some 
anoni
al pro
ess, 
onsisting of k moves M1,M2, . . . ,Mk, and rea
hing the

�nal arrangement A. Consider any sample pro
ess m1, m2, . . . starting with the same initial

arrangement and pro
eeding as long as possible; 
learly, it 
ontains at least one move. We need

to show that this pro
ess stops at A.

Let move m1 
onsist in repla
ing two 
opies of x with x ` a and x ` b. If move M1 does

the same, we may apply the indu
tion hypothesis to the arrangement appearing after m1.

Otherwise, the 
anoni
al pro
ess should still 
ontain at least one move 
onsisting in repla
ing

px, xq ÞÑ px ` a, x ` bq, be
ause the initial arrangement 
ontains at least two 
opies of x, while

the �nal one 
ontains at most one su
h.

Let Mi be the �rst su
h move. Sin
e the 
opies of x are indistinguishable and no other 
opy

of x disappeared before Mi in the 
anoni
al pro
ess, the moves in this pro
ess 
an be permuted

as Mi,M1, . . . ,Mi´1,Mi`1, . . . ,Mk, without a�e
ting the �nal arrangement. Now it su�
es to

perform the move m1 “ Mi and apply the indu
tion hypothesis as above. l

Claim 2. Consider any pro
ess starting from the empty board, whi
h involved exa
tly n moves

of type piiq and led to a �nal arrangement where all the numbers are distin
t. Assume that

one starts with the board 
ontaining 2n zeroes (as if n moves of type piiq were made in the

beginning), applying type piq moves in an arbitrary way. Then this pro
ess will rea
h the same

�nal arrangement.

Proof. Starting with the board with 2n zeros, one may indeed model the �rst pro
ess mentioned

in the statement of the 
laim, omitting the type piiq moves. This way, one rea
hes the same

�nal arrangement. Now, Claim 1 yields that this �nal arrangement will be obtained when

type piq moves are applied arbitrarily. l

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer

n su
h that, starting from 2n zeroes, one may apply type piq moves inde�nitely.

In order to prove this, we start with an obvious indu
tion on s ` t “ k ě 1 to show that if

we start with 2s`t
zeros, then we 
an get simultaneously on the board, at some point, ea
h of

the numbers sa ` tb, with s ` t “ k.

Suppose now that a ă b. Then, an appropriate use of separate groups of zeros allows us to

get two 
opies of ea
h of the numbers sa ` tb, with 1 ď s, t ď b.

De�ne N “ ab´a´b, and noti
e that after representing ea
h of numbers N`k, 1 ď k ď b, in

the form sa`tb, 1 ď s, t ď b we 
an get, using enough zeros, the numbers N`1, N`2, . . . , N`a

and the numbers N ` 1, N ` 2, . . . , N ` b.

From now on we 
an perform only moves of type piq. Indeed, if n ě N , the o

urren
e of the

numbers n` 1, n` 2, . . . , n` a and n` 1, n` 2, . . . , n` b and the repla
ement pn` 1, n` 1q ÞÑ
pn ` b ` 1, n ` a ` 1q leads to the o

urren
e of the numbers n ` 2, n ` 3, . . . , n ` a ` 1 and

n ` 2, n ` 3, . . . , n ` b ` 1.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fa
t the number

of moves in the 
anoni
al pro
ess is the same as in an arbitrary sample one.
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C7.

Consider 2018 pairwise 
rossing 
ir
les no three of whi
h are 
on
urrent. These 
ir
les

subdivide the plane into regions bounded by 
ir
ular edges that meet at verti
es. Noti
e that

there are an even number of verti
es on ea
h 
ir
le. Given the 
ir
le, alternately 
olour the

verti
es on that 
ir
le red and blue. In doing so for ea
h 
ir
le, every vertex is 
oloured twi
e �

on
e for ea
h of the two 
ir
les that 
ross at that point. If the two 
olourings agree at a vertex,

then it is assigned that 
olour; otherwise, it be
omes yellow. Show that, if some 
ir
le 
ontains

at least 2061 yellow points, then the verti
es of some region are all yellow.

(India)

Solution 1. Letting n “ 2018, we will show that, if every region has at least one non-yellow

vertex, then every 
ir
le 
ontains at most n ` t
?
n ´ 2u ´ 2 yellow points. In the 
ase at hand,

the latter equals 2018 ` 44 ´ 2 “ 2060, 
ontradi
ting the hypothesis.

Consider the natural geometri
 graph G asso
iated with the 
on�guration of n 
ir
les. Fix

any 
ir
le C in the 
on�guration, let k be the number of yellow points on C, and �nd a suitable

lower bound for the total number of yellow verti
es of G in terms of k and n. It turns out that

k is even, and G has at least

k ` 2

ˆ
k{2
2

˙
` 2

ˆ
n ´ k{2 ´ 1

2

˙
“ k2

2
´ pn ´ 2qk ` pn ´ 2qpn ´ 1q p˚q

yellow verti
es. The proof hinges on the two lemmata below.

Lemma 1. Let two 
ir
les in the 
on�guration 
ross at x and y. Then x and y are either both

yellow or both non-yellow.

Proof. This is be
ause the numbers of interior verti
es on the four ar
s x and y determine on

the two 
ir
les have like parities. l

In parti
ular, ea
h 
ir
le in the 
on�guration 
ontains an even number of yellow verti
es.

Lemma 2. If Ňxy, Ňyz, and Ňzx are 
ir
ular ar
s of three pairwise distin
t 
ir
les in the 
on�gu-

ration, then the number of yellow verti
es in the set tx, y, zu is odd.

Proof. Let C1, C2, C3 be the three 
ir
les under 
onsideration. Assume, without loss of gen-

erality, that C2 and C3 
ross at x, C3 and C1 
ross at y, and C1 and C2 
ross at z. Let k1,

k2, k3 be the numbers of interior verti
es on the three 
ir
ular ar
s under 
onsideration. Sin
e

ea
h 
ir
le in the 
on�guration, di�erent from the Ci, 
rosses the 
y
le Ňxy YŇyz Y Ňzx at an even

number of points (re
all that no three 
ir
les are 
on
urrent), and self-
rossings are 
ounted

twi
e, the sum k1 ` k2 ` k3 is even.

Let Z1 be the 
olour z gets from C1 and de�ne the other 
olours similarly. By the pre
eding,

the number of bi
hromati
 pairs in the list pZ1, Y1q, pX2, Z2q, pY3, X3q is odd. Sin
e the total

number of 
olour 
hanges in a 
y
le Z1�Y1�Y3�X3�X2�Z2�Z1 is even, the number of bi
hromati


pairs in the list pX2, X3q, pY1, Y3q, pZ1, Z2q is odd, and the lemma follows. l

We are now in a position to prove that p˚q bounds the total number of yellow verti
es from

below. Refer to Lemma 1 to infer that the k yellow verti
es on C pair o� to form the pairs of

points where C is 
rossed by k{2 
ir
les in the 
on�guration. By Lemma 2, these 
ir
les 
ross

pairwise to a

ount for another 2
`
k{2
2

˘
yellow verti
es. Finally, the remaining n´k{2´ 1 
ir
les

in the 
on�guration 
ross C at non-yellow verti
es, by Lemma 1, and Lemma 2 applies again

to show that these 
ir
les 
ross pairwise to a

ount for yet another 2
`
n´k{2´1

2

˘
yellow verti
es.

Consequently, there are at least p˚q yellow verti
es.

Next, noti
e that G is a plane graph on npn´ 1q degree 4 verti
es, having exa
tly 2npn´ 1q
edges and exa
tly npn ´ 1q ` 2 fa
es (regions), the outer fa
e in
lusive (by Euler's formula for

planar graphs).

Lemma 3. Ea
h fa
e of G has equally many red and blue verti
es. In parti
ular, ea
h fa
e has

an even number of non-yellow verti
es.
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Proof. Tra
e the boundary of a fa
e on
e in 
ir
ular order, and 
onsider the 
olours ea
h vertex

is assigned in the 
olouring of the two 
ir
les that 
ross at that vertex, to infer that 
olours of

non-yellow verti
es alternate. l

Consequently, if ea
h region has at least one non-yellow vertex, then it has at least two su
h.

Sin
e ea
h vertex of G has degree 4, 
onsideration of vertex-fa
e in
iden
es shows that G has

at least npn´1q{2`1 non-yellow verti
es, and hen
e at most npn´1q{2´1 yellow verti
es. (In

fa
t, Lemma 3 shows that there are at least npn ´ 1q{4 ` 1{2 red, respe
tively blue, verti
es.)

Finally, re
all the lower bound p˚q for the total number of yellow verti
es in G, to write

npn ´ 1q{2 ´ 1 ě k2{2 ´ pn ´ 2qk ` pn ´ 2qpn ´ 1q, and 
on
lude that k ď n ` t
?
n ´ 2u ´ 2, as


laimed in the �rst paragraph.

Solution 2. The �rst two lemmata in Solution 1 show that the 
ir
les in the 
on�guration

split into two 
lasses: Consider any 
ir
le C along with all 
ir
les that 
ross C at yellow points

to form one 
lass; the remaining 
ir
les then form the other 
lass. Lemma 2 shows that any pair

of 
ir
les in the same 
lass 
ross at yellow points; otherwise, they 
ross at non-yellow points.

Call the 
ir
les from the two 
lasses white and bla
k, respe
tively. Call a region yellow if

its verti
es are all yellow. Let w and b be the numbers of white and bla
k 
ir
les, respe
tively;


learly, w ` b “ n. Assume that w ě b, and that there is no yellow region. Clearly, b ě 1,

otherwise ea
h region is yellow. The white 
ir
les subdivide the plane into wpw ´ 1q ` 2 larger

regions � 
all them white. The white regions (or rather their boundaries) subdivide ea
h bla
k


ir
le into bla
k ar
s. Sin
e there are no yellow regions, ea
h white region 
ontains at least one

bla
k ar
.

Consider any white region; let it 
ontain t ě 1 bla
k ar
s. We 
laim that the number of

points at whi
h these t ar
s 
ross does not ex
eed t ´ 1. To prove this, 
onsider a multigraph

whose verti
es are these bla
k ar
s, two verti
es being joined by an edge for ea
h point at whi
h

the 
orresponding ar
s 
ross. If this graph had more than t´ 1 edges, it would 
ontain a 
y
le,

sin
e it has t verti
es; this 
y
le would 
orrespond to a 
losed 
ontour formed by bla
k sub-ar
s,

lying inside the region under 
onsideration. This 
ontour would, in turn, de�ne at least one

yellow region, whi
h is impossible.

Let ti be the number of bla
k ar
s inside the ithwhite region. The total number of bla
k

ar
s is

ř
i ti “ 2wb, and they 
ross at 2

`
b

2

˘
“ bpb ´ 1q points. By the pre
eding,

bpb ´ 1q ď
w2´w`2ÿ

i“1

pti ´ 1q “
w2´w`2ÿ

i“1

ti ´ pw2 ´ w ` 2q “ 2wb ´ pw2 ´ w ` 2q,

or, equivalently, pw´ bq2 ď w ` b´ 2 “ n´ 2, whi
h is the 
ase if and only if w´ b ď t
?
n ´ 2u.

Consequently, b ď w ď
`
n ` t

?
n ´ 2u

˘
{2, so there are at most 2pw ´ 1q ď n ` t

?
n ´ 2u ´ 2

yellow verti
es on ea
h 
ir
le � a 
ontradi
tion.
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Geometry

G1.

Let ABC be an a
ute-angled triangle with 
ir
um
ir
le Γ. Let D and E be points on

the segments AB and AC, respe
tively, su
h that AD “ AE. The perpendi
ular bise
tors of

the segments BD and CE interse
t the small ar
s

ŊAB and

ŊAC at points F and G respe
tively.

Prove that DE ‖ FG.

(Gree
e)

Solution 1. In the sequel, all the 
onsidered ar
s are small ar
s.

Let P be the midpoint of the ar


ŊBC. Then AP is the bise
tor of =BAC, hen
e, in the

isos
eles triangleADE, AP K DE. So, the statement of the problem is equivalent to AP K FG.

In order to prove this, let K be the se
ond interse
tion of Γ with FD. Then the triangle

FBD is isos
eles, therefore

=AKF “ =ABF “ =FDB “ =ADK,

yielding AK “ AD. In the same way, denoting by L the se
ond interse
tion of Γ with GE, we

get AL “ AE. This shows that AK “ AL.

A

B C
P

D
E

F

G

K

L

Now =FBD “ =FDB gives

ŊAF “ ŊBF ` ŊAK “ ŊBF ` ŇAL, hen
e ŊBF “ ŇLF . In a similar

way, we get

ŊCG “ ŊGK. This yields

=pAP, FGq “
ŊAF ` ŊPG

2
“

ŇAL ` ŇLF ` ŊPC ` ŊCG

2
“

ŊKL ` ŊLB ` ŊBC ` ŊCK

4
“ 90˝.

Solution 2. Let Z “ AB X FG, T “ AC X FG. It su�
es to prove that =ATZ “ =AZT .

Let X be the point for whi
h FXAD is a parallelogram. Then

=FXA “ =FDA “ 180˝ ´ =FDB “ 180˝ ´ =FBD,

where in the last equality we used that FD “ FB. It follows that the quadrilateral BFXA is


y
li
, so X lies on Γ.

A

X
F

B

C

G

Y

TE

D
Z
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Analogously, if Y is the point for whi
h GY AE is a parallelogram, then Y lies on Γ. So

the quadrilateral XFGY is 
y
li
 and FX “ AD “ AE “ GY , hen
e XFGY is an isos
eles

trapezoid.

Now, by XF ‖ AZ and Y G ‖ AT , it follows that =ATZ “ =Y GF “ =XFG “ =AZT .

Solution 3. As in the �rst solution, we prove that FG K AP , where P is the midpoint of the

small ar


ŊBC.

Let O be the 
ir
um
entre of the triangle ABC, and let M and N be the midpoints of the

small ar
s

ŊAB and

ŊAC, respe
tively. Then OM and ON are the perpendi
ular bise
tors of AB

and AC, respe
tively.

A

B

P

M

F

N

O

D

E
G

d

d

C

The distan
e d between OM and the perpendi
ular bise
tor of BD is

1
2
AB ´ 1

2
BD “ 1

2
AD,

hen
e it is equal to the distan
e between ON and the perpendi
ular bise
tor of CE.

This shows that the isos
eles trapezoid determined by the diameter δ of Γ through M and

the 
hord parallel to δ through F is 
ongruent to the isos
eles trapezoid determined by the

diameter δ1
of Γ through N and the 
hord parallel to δ1

through G. Therefore MF “ NG,

yielding MN ‖ FG.

Now

=pMN,AP q “ 1

2

`ŊAM ` ŊPC ` ŊCN
˘

“ 1

4

`ŊAB ` ŊBC ` ŊCA
˘

“ 90˝,

hen
e MN K AP , and the 
on
lusion follows.
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G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point su
h that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respe
tively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is 
y
li
.

(Australia)

Solution. Sin
e AB “ AC, AM is the perpendi
ular bise
tor of BC, hen
e =PAM “
=AMC “ 90˝

.

P A

B

X

M C

Y

Z

Now let Z be the 
ommon point of AM and the perpendi
ular through Y to PC (noti
e

that Z lies on to the ray AM beyond M). We have =PAZ “ =PY Z “ 90˝
. Thus the points

P , A, Y , and Z are 
on
y
li
.

Sin
e =CMZ “ =CY Z “ 90˝
, the quadrilateral CY ZM is 
y
li
, hen
e =CZM “

=CYM . By the 
ondition in the statement, =CYM “ =BXM , and, by symmetry in ZM ,

=CZM “ =BZM . Therefore, =BXM “ =BZM . It follows that the points B, X , Z, and M

are 
on
y
li
, hen
e =BXZ “ 180˝ ´ =BMZ “ 90˝
.

Finally, we have =PXZ “ =PY Z “ =PAZ “ 90˝
, hen
e the �ve points P,A,X, Y, Z are


on
y
li
. In parti
ular, the quadrilateral APXY is 
y
li
, as required.

Comment 1. Clearly, the key point Z from the solution above 
an be introdu
ed in several di�erent

ways, e.g., as the se
ond meeting point of the 
ir
le CMY and the line AM , or as the se
ond meeting

point of the 
ir
les CMY and BMX, et
.

For some of de�nitions of Z its lo
ation is not obvious. For instan
e, if Z is de�ned as a 
ommon

point of AM and the perpendi
ular through X to PX, it is not 
lear that Z lies on the ray AM

beyond M . To avoid su
h slippery details some more restri
tions on the 
onstru
tion may be required.

Comment 2. Let us dis
uss a 
onne
tion to the Miquel point of a 
y
li
 quadrilateral. Set X 1 “
MX X PC, Y 1 “ MY X PB, and Q “ XY X X 1Y 1

(see the �gure below).

We 
laim that BC ‖ PQ. (One way of proving this is the following. Noti
e that the quadruple

of lines PX,PM,PY, PQ is harmoni
, hen
e the quadruple B, M , C, PQ X BC of their interse
tion

points with BC is harmoni
. Sin
e M is the midpoint of BC, PQ X BC is an ideal point, i.e.,

PQ ‖ BC.)

It follows from the given equality =PXM “ =PYM that the quadrilateral XYX 1Y 1
is 
y
li
.

Note that A is the proje
tion of M onto PQ. By a known des
ription, A is the Miquel point for the

sidelines XY,XY 1,X 1Y,X 1Y 1
. In parti
ular, the 
ir
le PXY passes through A.
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P
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Comment 3. An alternative approa
h is the following. One 
an note that the (oriented) lengths of

the segments CY and BX are both linear fun
tions of a parameter t “ cot=PXM . As t varies, the

interse
tion point S of the perpendi
ular bise
tors of PX and PY tra
es a �xed line, thus the family

of 
ir
les PXY has a �xed 
ommon point (other than P ). By 
he
king parti
ular 
ases, one 
an show

that this �xed point is A.

Comment 4. The problem states that =PXM “ =PYM implies that APXY is 
y
li
. The original

submission 
laims that these two 
onditions are in fa
t equivalent. The Problem Sele
tion Committee

omitted the 
onverse part, sin
e it follows easily from the dire
t one, by reversing arguments.
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G3.

A 
ir
le ω of radius 1 is given. A 
olle
tion T of triangles is 
alled good, if the following


onditions hold:

piq ea
h triangle from T is ins
ribed in ω;

piiq no two triangles from T have a 
ommon interior point.

Determine all positive real numbers t su
h that, for ea
h positive integer n, there exists a

good 
olle
tion of n triangles, ea
h of perimeter greater than t.

(South Afri
a)

Answer: t P p0, 4s.
Solution. First, we show how to 
onstru
t a good 
olle
tion of n triangles, ea
h of perimeter

greater than 4. This will show that all t ď 4 satisfy the required 
onditions.

Constru
t indu
tively an pn ` 2q-gon BA1A2 . . . AnC ins
ribed in ω su
h that BC is a

diameter, and BA1A2, BA2A3, . . . , BAn´1An, BAnC is a good 
olle
tion of n triangles. For

n “ 1, take any triangleBA1C ins
ribed in ω su
h thatBC is a diameter; its perimeter is greater

than 2BC “ 4. To perform the indu
tive step, assume that the pn ` 2q-gon BA1A2 . . . AnC is

already 
onstru
ted. Sin
e AnB ` AnC ` BC ą 4, one 
an 
hoose a point An`1 on the small

ar


ŐCAn, 
lose enough to C, so that AnB `AnAn`1 `BAn`1 is still greater than 4. Thus ea
h

of these new triangles BAnAn`1 and BAn`1C has perimeter greater than 4, whi
h 
ompletes

the indu
tion step.

C B

A1

A2

A3

We pro
eed by showing that no t ą 4 satis�es the 
onditions of the problem. To this end,

we assume that there exists a good 
olle
tion T of n triangles, ea
h of perimeter greater than t,

and then bound n from above.

Take ε ą 0 su
h that t “ 4 ` 2ε.

Claim. There exists a positive 
onstant σ “ σpεq su
h that any triangle ∆ with perimeter

2s ě 4 ` 2ε, ins
ribed in ω, has area Sp∆q at least σ.
Proof. Let a, b, c be the side lengths of ∆. Sin
e ∆ is ins
ribed in ω, ea
h side has length at

most 2. Therefore, s ´ a ě p2 ` εq ´ 2 “ ε. Similarly, s ´ b ě ε and s ´ c ě ε. By Heron's

formula, Sp∆q “
a

sps ´ aqps ´ bqps ´ cq ě
a

p2 ` εqε3. Thus we 
an set σpεq “
a

p2 ` εqε3.
l

Now we see that the total area S of all triangles from T is at least nσpεq. On the other

hand, S does not ex
eed the area of the disk bounded by ω. Thus nσpεq ď π, whi
h means

that n is bounded from above.

Comment 1. One may prove the Claim using the formula S “ abc

4R
instead of Heron's formula.

Comment 2. In the statement of the problem 
ondition piq 
ould be repla
ed by a weaker one: ea
h

triangle from T lies within ω. This does not a�e
t the solution above, but redu
es the number of ways

to prove the Claim.
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G4.

A point T is 
hosen inside a triangle ABC. Let A1, B1, and C1 be the re�e
tions

of T in BC, CA, and AB, respe
tively. Let Ω be the 
ir
um
ir
le of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respe
tively. Prove that the

lines AA2, BB2, and CC2 are 
on
urrent on Ω.

(Mongolia)

Solution. By ?pℓ, nq we always mean the dire
ted angle of the lines ℓ and n, taken modulo 180˝
.

Let CC2 meet Ω again at K (as usual, if CC2 is tangent to Ω, we set T “ C2). We show

that the line BB2 
ontains K; similarly, AA2 will also pass through K. For this purpose, it

su�
es to prove that

?pC2C,C2A1q “ ?pB2B,B2A1q. (1)

By the problem 
ondition, CB and CA are the perpendi
ular bise
tors of TA1 and TB1,

respe
tively. Hen
e, C is the 
ir
um
entre of the triangle A1TB1. Therefore,

?pCA1, CBq “ ?pCB,CT q “ ?pB1A1, B1T q “ ?pB1A1, B1B2q.

In 
ir
le Ω we have ?pB1A1, B1B2q “ ?pC2A1, C2B2q. Thus,

?pCA1, CBq “ ?pB1A1, B1B2q “ ?pC2A1, C2B2q. (2)

Similarly, we get

?pBA1, BCq “ ?pC1A1, C1C2q “ ?pB2A1, B2C2q. (3)

The two obtained relations yield that the triangles A1BC and A1B2C2 are similar and

equioriented, hen
e

A1B2

A1B
“ A1C2

A1C
and ?pA1B,A1Cq “ ?pA1B2, A1C2q.

The se
ond equality may be rewritten as ?pA1B,A1B2q “ ?pA1C,A1C2q, so the triangles

A1BB2 and A1CC2 are also similar and equioriented. This establishes (1).

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

B
C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

KΩ

Comment 1. In fa
t, the triangle A1BC is an image of A1B2C2 under a spiral similarity 
entred

at A1; in this 
ase, the triangles ABB2 and ACC2 are also spirally similar with the same 
entre.
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Comment 2. After obtaining (2) and (3), one 
an �nish the solution in di�erent ways.

For instan
e, introdu
ing the point X “ BCXB2C2, one gets from these relations that the 4-tuples

pA1, B,B2,Xq and pA1, C,C2,Xq are both 
y
li
. Therefore, K is the Miquel point of the lines BB2,

CC2, BC, and B2C2; this yields that the meeting point of BB2 and CC2 lies on Ω.

Yet another way is to show that the points A1, B, C, and K are 
on
y
li
, as

?pKC,KA1q “ ?pB2C2, B2A1q “ ?pBC,BA1q.

By symmetry, the se
ond point K 1
of interse
tion of BB2 with Ω is also 
on
y
li
 to A1, B, and C,

hen
e K 1 “ K.

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A′

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′

C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KΩ

Comment 3. The requirement that the 
ommon point of the lines AA2, BB2, and CC2 should lie

on Ω may seem to make the problem easier, sin
e it suggests some approa
hes. On the other hand,

there are also di�erent ways of showing that the lines AA2, BB2, and CC2 are just 
on
urrent.

In parti
ular, the problem 
onditions yield that the lines A2T , B2T , and C2T are perpendi
ular to

the 
orresponding sides of the triangle ABC. One may show that the lines AT , BT , and CT are also

perpendi
ular to the 
orresponding sides of the triangle A2B2C2, i.e., the triangles ABC and A2B2C2

are orthologi
, and their orthology 
entres 
oin
ide. It is known that su
h triangles are also perspe
tive,

i.e. the lines AA2, BB2, and CC2 are 
on
urrent (in proje
tive sense).

To show this mutual orthology, one may again apply angle 
hasing, but there are also other methods.

Let A1
, B1

, and C 1
be the proje
tions of T onto the sides of the triangle ABC. Then A2T ¨ TA1 “

B2T ¨ TB1 “ C2T ¨ TC 1
, sin
e all three produ
ts equal (minus) half the power of T with respe
t to Ω.

This means that A2, B2, and C2 are the poles of the sidelines of the triangle ABC with respe
t to

some 
ir
le 
entred at T and having pure imaginary radius (in other words, the re�e
tions of A2, B2,

and C2 in T are the poles of those sidelines with respe
t to some regular 
ir
le 
entred at T ). Hen
e,

dually, the verti
es of the triangle ABC are also the poles of the sidelines of the triangle A2B2C2.
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G5.

Let ABC be a triangle with 
ir
um
ir
le ω and in
entre I. A line ℓ interse
ts the

lines AI, BI, and CI at points D, E, and F , respe
tively, distin
t from the points A, B, C,

and I. The perpendi
ular bise
tors x, y, and z of the segments AD, BE, and CF , respe
tively

determine a triangle Θ. Show that the 
ir
um
ir
le of the triangle Θ is tangent to ω.

(Denmark)

Preamble. Let X “ y X z, Y “ x X z, Z “ x X y and let Ω denote the 
ir
um
ir
le of the

triangle XY Z. Denote by X0, Y0, and Z0 the se
ond interse
tion points of AI, BI and CI,

respe
tively, with ω. It is known that Y0Z0 is the perpendi
ular bise
tor of AI, Z0X0 is the

perpendi
ular bise
tor of BI, and X0Y0 is the perpendi
ular bise
tor of CI. In parti
ular, the

triangles XY Z and X0Y0Z0 are homotheti
, be
ause their 
orresponding sides are parallel.

The solutions below mostly exploit the following approa
h. Consider the triangles XY Z

and X0Y0Z0, or some other pair of homotheti
 triangles ∆ and δ ins
ribed into Ω and ω,

respe
tively. In order to prove that Ω and ω are tangent, it su�
es to show that the 
entre T

of the homothety taking ∆ to δ lies on ω (or Ω), or, in other words, to show that ∆ and δ are

perspe
tive (i.e., the lines joining 
orresponding verti
es are 
on
urrent), with their perspe
tor

lying on ω (or Ω).

We use dire
ted angles throughout all the solutions.

Solution 1.

Claim 1. The re�e
tions ℓa, ℓb and ℓc of the line ℓ in the lines x, y, and z, respe
tively, are


on
urrent at a point T whi
h belongs to ω.

A

B C
E

D
F

T

Z

z

I

Z 0

Db

Y0

Y

l

lb

lc

la

x

y

Dc

X0

X

W

w

Proof. Noti
e that ?pℓb, ℓcq “ ?pℓb, ℓq ` ?pℓ, ℓcq “ 2?py, ℓq ` 2?pℓ, zq “ 2?py, zq. But y K BI

and z K CI implies ?py, zq “ ?pBI, ICq, so, sin
e 2?pBI, ICq “ ?pBA,ACq, we obtain

?pℓb, ℓcq “ ?pBA,ACq. p1q

Sin
e A is the re�e
tion of D in x, A belongs to ℓa; similarly, B belongs to ℓb. Then p1q
shows that the 
ommon point T 1

of ℓa and ℓb lies on ω; similarly, the 
ommon point T 2
of ℓc

and ℓb lies on ω.

If B R ℓa and B R ℓc, then T 1
and T 2

are the se
ond point of interse
tion of ℓb and ω, hen
e

they 
oin
ide. Otherwise, if, say, B P ℓc, then ℓc “ BC, so ?pBA,ACq “ ?pℓb, ℓcq “ ?pℓb, BCq,
whi
h shows that ℓb is tangent at B to ω and T 1 “ T 2 “ B. So T 1

and T 2

oin
ide in all the


ases, and the 
on
lusion of the 
laim follows. l
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Now we prove that X , X0, T are 
ollinear. Denote by Db and Dc the re�e
tions of the point

D in the lines y and z, respe
tively. Then Db lies on ℓb, Dc lies on ℓc, and

?pDbX,XDcq “ ?pDbX,DXq ` ?pDX,XDcq “ 2?py,DXq ` 2?pDX, zq “ 2?py, zq
“ ?pBA,ACq “ ?pBT, TCq,

hen
e the quadrilateral XDbTDc is 
y
li
. Noti
e also that sin
e XDb “ XD “ XDc, the

points D,Db, Dc lie on a 
ir
le with 
entre X . Using in this 
ir
le the diameter DcD
1
c yields

?pDbDc, DcXq “ 90˝ ` ?pDbD
1
c, D

1
cXq “ 90˝ ` ?pDbD,DDcq. Therefore,

?pℓb, XT q “ ?pDbT,XT q “ ?pDbDc, DcXq “ 90˝ ` ?pDbD,DDcq
“ 90˝ ` ?pBI, ICq “ ?pBA,AIq “ ?pBA,AX0q “ ?pBT, TX0q “ ?pℓb, X0T q,

so the points X , X0, T are 
ollinear. By a similar argument, Y, Y0, T and Z,Z0, T are 
ollinear.

As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may pro
eed in another way. As it was shown, the re�e
tions

of ℓ in the sidelines of XY Z are 
on
urrent at T . Thus ℓ is the Steiner line of T with respe
t to ∆XY Z

(that is the line 
ontaining the re�e
tions Ta, Tb, Tc of T in the sidelines of XY Z). The properties of

the Steiner line imply that T lies on Ω, and ℓ passes through the ortho
entre H of the triangle XY Z.

A

B C
D

F

T

Z

z

I

H

Y

w

l

lb
lcla

X

x

y

Ta

Tc

Ha

Hc
Hb

Tb

W

E

Let Ha, Hb, and Hc be the re�e
tions of the point H in the lines x, y, and z, respe
tively. Then

the triangle HaHbHc is ins
ribed in Ω and homotheti
 to ABC (by an easy angle 
hasing). Sin
e

Ha P ℓa, Hb P ℓb, and Hc P ℓc, the triangles HaHbHc and ABC form a required pair of triangles ∆ and

δ mentioned in the preamble.

Comment 2. The following observation shows how one may guess the des
ription of the tangen
y

point T from Solution 1.

Let us �x a dire
tion and move the line ℓ parallel to this dire
tion with 
onstant speed.

Then the points D, E, and F are moving with 
onstant speeds along the lines AI, BI, and CI,

respe
tively. In this 
ase x, y, and z are moving with 
onstant speeds, de�ning a family of homotheti


triangles XY Z with a 
ommon 
entre of homothety T . Noti
e that the triangle X0Y0Z0 belongs to

this family (for ℓ passing through I). We may spe
ify the lo
ation of T 
onsidering the degenerate


ase when x, y, and z are 
on
urrent. In this degenerate 
ase all the lines x, y, z, ℓ, ℓa, ℓb, ℓc have a


ommon point. Note that the lines ℓa, ℓb, ℓc remain 
onstant as ℓ is moving (keeping its dire
tion).

Thus T should be the 
ommon point of ℓa, ℓb, and ℓc, lying on ω.
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Solution 2. As mentioned in the preamble, it is su�
ient to prove that the 
entre T of the

homothety taking XY Z to X0Y0Z0 belongs to ω. Thus, it su�
es to prove that ?pTX0, TY0q “
?pZ0X0, Z0Y0q, or, equivalently, ?pXX0, Y Y0q “ ?pZ0X0, Z0Y0q.

Re
all that Y Z and Y0Z0 are the perpendi
ular bise
tors of AD and AI, respe
tively. Then,

the ve
tor

ÝÑx perpendi
ular to Y Z and shifting the line Y0Z0 to Y Z is equal to

1
2

ÝÑ
ID. De�ne

the shifting ve
tors

ÝÑy “ 1
2

ÝÑ
IE, ÝÑz “ 1

2

ÝÑ
IF similarly. Consider now the triangle UV W formed by

the perpendi
ulars to AI, BI, and CI through D, E, and F , respe
tively (see �gure below).

This is another triangle whose sides are parallel to the 
orresponding sides of XY Z.

Claim 2.

ÝÑ
IU “ 2

ÝÝÝÑ
X0X ,

ÝÑ
IV “ 2

ÝÝÑ
Y0Y ,

ÝÝÑ
IW “ 2

ÝÝÑ
Z0Z.

Proof.We prove one of the relations, the other proofs being similar. To prove the equality of two

ve
tors it su�
es to proje
t them onto two non-parallel axes and 
he
k that their proje
tions

are equal.

The proje
tion of

ÝÝÝÑ
X0X onto IB equals ~y, while the proje
tion of

ÝÑ
IU onto IB is

ÝÑ
IE “ 2~y.

The proje
tions onto the other axis IC are ~z and

ÝÑ
IF “ 2~z. Then

ÝÑ
IU “ 2

ÝÝÝÑ
X0X follows. l

Noti
e that the line ℓ is the Simson line of the point I with respe
t to the triangle UVW ;

thus U , V , W , and I are 
on
y
li
. It follows from Claim 2 that ?pXX0, Y Y0q “ ?pIU, IV q “
?pWU,WV q “ ?pZ0X0, Z0Y0q, and we are done.

A

T I

C

F

D

B

Z
W

X
U

Y

V

E

Ia

Ib

Ic

x

y

z

u

v

w

Z0

Y0

X0

w
W

l

Solution 3. Let Ia, Ib, and Ic be the ex
entres of triangle ABC 
orresponding to A, B, and

C, respe
tively. Also, let u, v, and w be the lines through D, E, and F whi
h are perpendi
ular

to AI, BI, and CI, respe
tively, and let UVW be the triangle determined by these lines, where

u “ VW , v “ UW and w “ UV (see �gure above).

Noti
e that the line u is the re�e
tion of IbIc in the line x, be
ause u, x, and IbIc are

perpendi
ular to AD and x is the perpendi
ular bise
tor of AD. Likewise, v and IaIc are

re�e
tions of ea
h other in y, while w and IaIb are re�e
tions of ea
h other in z. It follows that

X , Y , and Z are the midpoints of UIa, V Ib and WIc, respe
tively, and that the triangles UVW ,

XY Z and IaIbIc are either translates of ea
h other or homotheti
 with a 
ommon homothety


entre.

Constru
t the points T and S su
h that the quadrilaterals UV IW , XY TZ and IaIbSIc are

homotheti
. Then T is the midpoint of IS. Moreover, note that ℓ is the Simson line of the

point I with respe
t to the triangle UV W , hen
e I belongs to the 
ir
um
ir
le of the triangle

UV W , therefore T belongs to Ω.



Shortlisted problems � solutions 47

Consider now the homothety or translation h1 that maps XY ZT to IaIbIcS and the homo-

thety h2 with 
entre I and fa
tor

1
2
. Furthermore, let h “ h2 ˝ h1. The transform h 
an be a

homothety or a translation, and

h pT q “ h2 ph1 pT qq “ h2 pSq “ T,

hen
e T is a �xed point of h. So, h is a homothety with 
entre T . Note that h2 maps the

ex
entres Ia, Ib, Ic to X0, Y0, Z0 de�ned in the preamble. Thus the 
entre T of the homothety

taking XY Z to X0Y0Z0 belongs to Ω, and this 
ompletes the proof.
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G6.

A 
onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is 
hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

Solution 1. Let B1
be the re�e
tion of B in the internal angle bise
tor of =AXC, so that

=AXB1 “ =CXB and =CXB1 “ =AXB. If X , D, and B1
are 
ollinear, then we are done.

Now assume the 
ontrary.

On the ray XB1
take a point E su
h that XE ¨ XB “ XA ¨ XC, so that △AXE „

△BXC and △CXE „ △BXA. We have =XCE ` =XCD “ =XBA ` =XAB ă 180˝
and

=XAE ` =XAD “ =XDA ` =XAD ă 180˝
, whi
h proves that X lies inside the angles

=ECD and =EAD of the quadrilateral EADC. Moreover, X lies in the interior of exa
tly

one of the two triangles EAD, ECD (and in the exterior of the other).

A

B
C

D

X

E
B’

The similarities mentioned above imply XA ¨ BC “ XB ¨ AE and XB ¨ CE “ XC ¨ AB.
Multiplying these equalities with the given equality AB ¨CD “ BC ¨DA, we obtain XA ¨CD ¨
CE “ XC ¨ AD ¨ AE, or, equivalently,

XA ¨ DE

AD ¨ AE “ XC ¨ DE

CD ¨ CE
. p˚q

Lemma. Let PQR be a triangle, and let X be a point in the interior of the angle QPR su
h that

=QPX “ =PRX . Then

PX ¨ QR

PQ ¨ PR
ă 1 if and only if X lies in the interior of the triangle PQR.

Proof. The lo
us of points X with =QPX “ =PRX lying inside the angle QPR is an ar
 α

of the 
ir
le γ through R tangent to PQ at P . Let γ interse
t the line QR again at Y (if γ

is tangent to QR, then set Y “ R). The similarity △QPY „ △QRP yields PY “ PQ ¨ PR

QR
.

Now it su�
es to show that PX ă PY if and only if X lies in the interior of the triangle PQR.

Let m be a line through Y parallel to PQ. Noti
e that the points Z of γ satisfying PZ ă PY

are exa
tly those between the lines m and PQ.

Case 1: Y lies in the segment QR (see the left �gure below).

In this 
ase Y splits α into two ar
s

ŊPY and

ŊY R. The ar
 ŊPY lies inside the triangle PQR,

and

ŊPY lies between m and PQ, hen
e PX ă PY for points X P ŊPY . The other ar


ŊY R

lies outside triangle PQR, and ŊY R is on the opposite side of m than P , hen
e PX ą PY for

X P ŊY R.
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Case 2: Y lies on the ray QR beyond R (see the right �gure below).

In this 
ase the whole ar
 α lies inside triangle PQR, and between m and PQ, thus PX ă
PY for all X P α. l

P

Q

R

X

Y

P

Q
R

Y

X

Applying the Lemma (to △EAD with the point X , and to △ECD with the point X),

we obtain that exa
tly one of two expressions

XA ¨ DE

AD ¨ AE and

XC ¨ DE

CD ¨ CE
is less than 1, whi
h


ontradi
ts (˚).

Comment 1. One may show that AB ¨ CD “ XA ¨ XC ` XB ¨ XD. We know that D,X,E are


ollinear and =DCE “ =CXD “ 180˝ ´ =AXB. Therefore,

AB ¨ CD “ XB ¨ sin=AXB

sin=BAX
¨ DE ¨ sin=CED

sin=DCE
“ XB ¨ DE.

Furthermore, XB ¨ DE “ XB ¨ pXD ` XEq “ XB ¨ XD ` XB ¨ XE “ XB ¨ XD ` XA ¨ XC.

Comment 2. For a 
onvex quadrilateral ABCD with AB ¨ CD “ BC ¨ DA, it is known that

=DAC ` =ABD ` =BCA` =CDB “ 180˝
(among other, it was used as a problem on the Regional

round of All-Russian olympiad in 2012), but it seems that there is no essential 
onne
tion between this

fa
t and the original problem.

Solution 2. The solution 
onsists of two parts. In Part 1 we show that it su�
es to prove

that

XB

XD
“ AB

CD
p1q

and

XA

XC
“ DA

BC
. p2q

In Part 2 we establish these equalities.

Part 1. Using the sine law and applying (1) we obtain

sin=AXB

sin=XAB
“ AB

XB
“ CD

XD
“ sin=CXD

sin=XCD
,

so sin=AXB “ sin=CXD by the problem 
onditions. Similarly, (2) yields sin=DXA “
sin=BXC. If at least one of the pairs p=AXB,=CXDq and p=BXC,=DXAq 
onsists of

supplementary angles, then we are done. Otherwise, =AXB “ =CXD and =DXA “ =BXC.

In this 
ase X “ AC X BD, and the problem 
onditions yield that ABCD is a parallelogram

and hen
e a rhombus. In this last 
ase the 
laim also holds.

Part 2. To prove the desired equality (1), invert ABCD at 
entre X with unit radius; the

images of points are denoted by primes.

We have

=A1B1C 1 “ =XB1A1 ` =XB1C 1 “ =XAB ` =XCB “ =XCD ` =XCB “ =BCD.
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Similarly, the 
orresponding angles of quadrilaterals ABCD and D1A1B1C 1
are equal.

Moreover, we have

A1B1 ¨ C 1D1 “ AB

XA ¨ XB
¨ CD

XC ¨ XD
“ BC

XB ¨ XC
¨ DA

XD ¨ DA
“ B1C 1 ¨ D1A1.

A

B

C

D

X
7→

A′

B′

C ′

D′

X

Now we need the following Lemma.

Lemma. Assume that the 
orresponding angles of 
onvex quadrilaterals XY ZT and X 1Y 1Z 1T 1

are equal, and that XY ¨ ZT “ Y Z ¨ TX and X 1Y 1 ¨ Z 1T 1 “ Y 1Z 1 ¨ T 1X 1
. Then the two

quadrilaterals are similar.

Proof. Take the quadrilateral XY Z1T1 similar to X 1Y 1Z 1T 1
and sharing the side XY with

XY ZT , su
h that Z1 and T1 lie on the rays Y Z and XT , respe
tively, and Z1T1 ‖ ZT . We

need to prove that Z1 “ Z and T1 “ T . Assume the 
ontrary. Without loss of generality,

TX ą XT1. Let segments XZ and Z1T1 interse
t at U . We have

T1X

T1Z1

ă T1X

T1U
“ TX

ZT
“ XY

Y Z
ă XY

Y Z1

,

thus T1X ¨ Y Z1 ă T1Z1 ¨ XY . A 
ontradi
tion. l
X Y

Z

T

U
Z1

T1

It follows from the Lemma that the quadrilaterals ABCD and D1A1B1C 1
are similar, hen
e

BC

AB
“ A1B1

D1A1
“ AB

XA ¨ XB
¨ XD ¨ XA

DA
“ AB

AD
¨ XD

XB
,

and therefore

XB

XD
“ AB2

BC ¨ AD “ AB2

AB ¨ CD
“ AB

CD
.

We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be 
ru
ial. On the other hand, after the

proof of the similarity D1A1B1C 1 „ ABCD one may �nish the solution in di�erent ways, e.g., as

follows. The similarity taking D1A1B1C 1
to ABCD maps X to the point X 1

isogonally 
onjugate

of X with respe
t to ABCD (i.e. to the point X 1
inside ABCD su
h that =BAX “ =DAX 1

,

=CBX “ =ABX 1
, =DCX “ =BCX 1

, =ADX “ =CDX 1
). It is known that the required equality

=AXB ` =CXD “ 180˝
is one of known 
onditions on a point X inside ABCD equivalent to the

existen
e of its isogonal 
onjugate.
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G7.

Let O be the 
ir
um
entre, and Ω be the 
ir
um
ir
le of an a
ute-angled triangle ABC.

Let P be an arbitrary point on Ω, distin
t from A, B, C, and their antipodes in Ω. Denote

the 
ir
um
entres of the triangles AOP , BOP , and COP by OA, OB, and OC , respe
tively.

The lines ℓA, ℓB, and ℓC perpendi
ular to BC, CA, and AB pass through OA, OB, and OC ,

respe
tively. Prove that the 
ir
um
ir
le of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)

Solution. As usual, we denote the dire
ted angle between the lines a and b by ?pa, bq. We

frequently use the fa
t that a1 K a2 and b1 K b2 yield ?pa1, b1q “ ?pa2, b2q.
Let the lines ℓB and ℓC meet at LA; de�ne the points LB and LC similarly. Note that

the sidelines of the triangle LALBLC are perpendi
ular to the 
orresponding sidelines of ABC.

Points OA, OB, OC are lo
ated on the 
orresponding sidelines of LALBLC ; moreover, OA, OB,

OC all lie on the perpendi
ular bise
tor of OP .
A

B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
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OBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB

OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
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ωB

ωC

Ω

Claim 1. The points LB, P , OA, and OC are 
on
y
li
.

Proof. Sin
e O is symmetri
 to P in OAOC , we have

?pOAP,OCP q “ ?pOCO,OAOq “ ?pCP,AP q “ ?pCB,ABq “ ?pOALB, OCLBq. l

Denote the 
ir
le through LB, P , OA, and OC by ωB. De�ne the 
ir
les ωA and ωC similarly.

Claim 2. The 
ir
um
ir
le of the triangle LALBLC passes through P .

Proof. From 
y
li
 quadruples of points in the 
ir
les ωB and ωC, we have

?pLCLA, LCP q “ ?pLCOB, LCP q “ ?pOAOB, OAP q
“ ?pOAOC , OAP q “ ?pLBOC , LBP q “ ?pLBLA, LBP q. l

Claim 3. The points P , LC , and C are 
ollinear.

Proof. We have ?pPLC , LCLAq “ ?pPLC , LCOBq “ ?pPOA, OAOBq. Further, sin
e OA is

the 
entre of the 
ir
le AOP , ?pPOA, OAOBq “ ?pPA,AOq. As O is the 
ir
um
entre of the

triangle PCA, ?pPA,AOq “ π{2´?pCA,CP q “ ?pCP, LCLAq. We obtain ?pPLC , LCLAq “
?pCP, LCLAq, whi
h shows that P P CLC . l



Shortlisted problems � solutions 53

Similarly, the points P , LA, A are 
ollinear, and the points P , LB, B are also 
ollinear.

Finally, the 
omputation above also shows that

?pOP, PLAq “ ?pPA,AOq “ ?pPLC , LCLAq,

whi
h means that OP is tangent to the 
ir
le PLALBLC .

Comment 1. The proof of Claim 2 may be repla
ed by the following remark: sin
e P belongs to the


ir
les ωA and ωC , P is the Miquel point of the four lines ℓA, ℓB , ℓC , and OAOBOC .

Comment 2. Claims 2 and 3 
an be proved in several di�erent ways and, in parti
ular, in the reverse

order.

Claim 3 implies that the triangles ABC and LALBLC are perspe
tive with perspe
tor P . Claim 2


an be derived from this observation using spiral similarity. Consider the 
entre Q of the spiral similarity

that maps ABC to LALBLC . From known spiral similarity properties, the points LA, LB , P,Q are


on
y
li
, and so are LA, LC , P,Q.

Comment 3. The �nal 
on
lusion 
an also be proved it terms of spiral similarity: the spiral similarity

with 
entre Q lo
ated on the 
ir
le ABC maps the 
ir
le ABC to the 
ir
le PLALBLC . Thus these


ir
les are orthogonal.

Comment 4. Noti
e that the homothety with 
entre O and ratio 2 takes OA to A1
that is the 
ommon

point of tangents to Ω at A and P . Similarly, let this homothety take OB to B1
and OC to C 1

. Let

the tangents to Ω at B and C meet at A2
, and de�ne the points B2

and C2
similarly. Now, repla
ing

labels O with I, Ω with ω, and swapping labels A Ø A2
, B Ø B2

, C Ø C2
we obtain the following

Reformulation. Let ω be the in
ir
le, and let I be the in
entre of a triangle ABC. Let P be

a point of ω (other than the points of 
onta
t of ω with the sides of ABC). The tangent to ω at P

meets the lines AB, BC, and CA at A1
, B1

, and C 1
, respe
tively. Line ℓA parallel to the internal

angle bise
tor of =BAC passes through A1
; de�ne lines ℓB and ℓC similarly. Prove that the line IP is

tangent to the 
ir
um
ir
le of the triangle formed by ℓA, ℓB, and ℓC .

Though this formulation is equivalent to the original one, it seems more 
hallenging, sin
e the point

of 
onta
t is now �hidden�.



54 Cluj-Napo
a � Romania, 3�14 July 2018

Number Theory

N1.

Determine all pairs pn, kq of distin
t positive integers su
h that there exists a positive

integer s for whi
h the numbers of divisors of sn and of sk are equal.

(Ukraine)

Answer: All pairs pn, kq su
h that n ∤ k and k ∤ n.

Solution. As usual, the number of divisors of a positive integer n is denoted by dpnq. If

n “ ś
i p

αi

i is the prime fa
torisation of n, then dpnq “ ś
ipαi ` 1q.

We start by showing that one 
annot �nd any suitable number s if k | n or n | k (and

k ‰ n). Suppose that n | k, and 
hoose any positive integer s. Then the set of divisors of sn is

a proper subset of that of sk, hen
e dpsnq ă dpskq. Therefore, the pair pn, kq does not satisfy
the problem requirements. The 
ase k | n is similar.

Now assume that n ∤ k and k ∤ n. Let p1, . . . , pt be all primes dividing nk, and 
onsider the

prime fa
torisations

n “
tź

i“1

pαi

i and k “
tź

i“1

p
βi

i .

It is reasonable to sear
h for the number s having the form

s “
tź

i“1

p
γi
i .

The (nonnegative integer) exponents γi should be 
hosen so as to satisfy

dpsnq
dpskq “

tź

i“1

αi ` γi ` 1

βi ` γi ` 1
“ 1. (1)

First of all, if αi “ βi for some i, then, regardless of the value of γi, the 
orresponding fa
tor

in (1) equals 1 and does not a�e
t the produ
t. So we may assume that there is no su
h index i.

For the other fa
tors in (1), the following lemma is useful.

Lemma. Let α ą β be nonnegative integers. Then, for every integer M ě β ` 1, there exists a

nonnegative integer γ su
h that

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
“ M ` 1

M
.

Proof.

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
ðñ α ´ β

β ` γ ` 1
“ 1

M
ðñ γ “ Mpα ´ βq ´ pβ ` 1q ě 0. l

Now we 
an �nish the solution. Without loss of generality, there exists an index u su
h that

αi ą βi for i “ 1, 2, . . . , u, and αi ă βi for i “ u` 1, . . . , t. The 
onditions n ∤ k and k ∤ n mean

that 1 ď u ď t ´ 1.

Choose an integer X greater than all the αi and βi. By the lemma, we 
an de�ne the

numbers γi so as to satisfy

αi ` γi ` 1

βi ` γi ` 1
“ uX ` i

uX ` i ´ 1
for i “ 1, 2, . . . , u, and

βu`i ` γu`i ` 1

αu`i ` γu`i ` 1
“ pt ´ uqX ` i

pt ´ uqX ` i ´ 1
for i “ 1, 2, . . . , t ´ u.
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Then we will have

dpsnq
dpskq “

uź

i“1

uX ` i

uX ` i ´ 1
¨
t´uź

i“1

pt ´ uqX ` i ´ 1

pt ´ uqX ` i
“ upX ` 1q

uX
¨ pt ´ uqX

pt ´ uqpX ` 1q “ 1,

as required.

Comment. The lemma 
an be used in various ways, in order to provide a suitable value of s. In

parti
ular, one may apply indu
tion on the number t of prime fa
tors, using identities like

n

n ´ 1
“ n2

n2 ´ 1
¨ n ` 1

n
.
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N2.

Let n ą 1 be a positive integer. Ea
h 
ell of an n ˆ n table 
ontains an integer.

Suppose that the following 
onditions are satis�ed:

piq Ea
h number in the table is 
ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any 
olumn, is 
ongruent

to n modulo n2
.

Let Ri be the produ
t of the numbers in the ith row, and Cj be the produ
t of the numbers in

the jth 
olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are 
ongruent modulo n4
.

(Indonesia)

Solution 1. Let Ai,j be the entry in the ith row and the jth 
olumn; let P be the produ
t of

all n2
entries. For 
onvenien
e, denote ai,j “ Ai,j ´ 1 and ri “ Ri ´ 1. We show that

nÿ

i“1

Ri ” pn ´ 1q ` P pmod n4q. (1)

Due to symmetry of the problem 
onditions, the sum of all the Cj is also 
ongruent to pn ´ 1q`P

modulo n4
, when
e the 
on
lusion.

By 
ondition piq, the number n divides ai,j for all i and j. So, every produ
t of at least two

of the ai,j is divisible by n2
, hen
e

Ri “
nź

j“1

p1`ai,jq “ 1`
nÿ

j“1

ai,j `
ÿ

1ďj1ăj2ďn

ai,j1ai,j2 `¨ ¨ ¨ ” 1`
nÿ

j“1

ai,j ” 1´n`
nÿ

j“1

Ai,j pmod n2q

for every index i. Using 
ondition piiq, we obtain Ri ” 1 pmod n2q, and so n2 | ri.
Therefore, every produ
t of at least two of the ri is divisible by n4

. Repeating the same

argument, we obtain

P “
nź

i“1

Ri “
nź

i“1

p1 ` riq ” 1 `
nÿ

i“1

ri pmod n4q,

when
e

nÿ

i“1

Ri “ n `
nÿ

i“1

ri ” n ` pP ´ 1q pmod n4q,

as desired.

Comment. The original version of the problem statement 
ontained also the 
ondition

piiiq The produ
t of all the numbers in the table is 
ongruent to 1 modulo n4
.

This 
ondition appears to be super�uous, so it was omitted.

Solution 2. We present a more straightforward (though lengthier) way to establish (1). We

also use the notation of ai,j.

By 
ondition piq, all the ai,j are divisible by n. Therefore, we have

P “
nź

i“1

nź

j“1

p1 ` ai,jq ” 1 `
ÿ

pi,jq

ai,j `
ÿ

pi1,j1q, pi2,j2q

ai1,j1ai2,j2

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q

ai1,j1ai2,j2ai3,j3 pmod n4q,
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where the last two sums are taken over all unordered pairs/triples of pairwise di�erent pairs

pi, jq; su
h 
onventions are applied throughout the solution.

Similarly,

nÿ

i“1

Ri “
nÿ

i“1

nź

j“1

p1 ` ai,jq ” n `
ÿ

i

ÿ

j

ai,j `
ÿ

i

ÿ

j1, j2

ai,j1ai,j2 `
ÿ

i

ÿ

j1, j2, j3

ai,j1ai,j2ai,j3 pmod n4q.

Therefore,

P ` pn ´ 1q ´
ÿ

i

Ri ”
ÿ

pi1,j1q, pi2,j2q
i1‰i2

ai1,j1ai2,j2 `
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2‰i3‰i1

ai1,j1ai2,j2ai3,j3

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2“i3

ai1,j1ai2,j2ai3,j3 pmod n4q.

We show that in fa
t ea
h of the three sums appearing in the right-hand part of this 
ongruen
e

is divisible by n4
; this yields (1). Denote those three sums by Σ1, Σ2, and Σ3 in order of

appearan
e. Re
all that by 
ondition piiq we have
ÿ

j

ai,j ” 0 pmod n2q for all indi
es i.

For every two indi
es i1 ă i2 we have

ÿ

j1

ÿ

j2

ai1,j1ai2,j2 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
” 0 pmod n4q,

sin
e ea
h of the two fa
tors is divisible by n2
. Summing over all pairs pi1, i2q we obtain n4 | Σ1.

Similarly, for every three indi
es i1 ă i2 ă i3 we have

ÿ

j1

ÿ

j2

ÿ

j3

ai1,j1ai2,j2ai3,j3 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
¨
ˆÿ

j3

ai3,j3

˙

whi
h is divisible even by n6
. Hen
e n4 | Σ2.

Finally, for every indi
es i1 ‰ i2 “ i3 and j2 ă j3 we have

ai2,j2 ¨ ai2,j3 ¨
ÿ

j1

ai1,j1 ” 0 pmod n4q,

sin
e the three fa
tors are divisible by n, n, and n2
, respe
tively. Summing over all 4-tuples of

indi
es pi1, i2, j2, j3q we get n4 | Σ3.
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N3.

De�ne the sequen
e a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequen
e whi
h 
an be expressed as a sum of (two or more) distin
t terms

of the sequen
e, as well as in�nitely many of those whi
h 
annot be expressed in su
h a way.

(Serbia)

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0

or 1) distin
t terms of the sequen
e. We say that two nonnegative integers b and c are equivalent

(written as b „ c) if they are either both representable or both non-representable.

One 
an easily 
ompute

Sn´1 :“ a0 ` ¨ ¨ ¨ ` an´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3.

Indeed, we have Sn ´ Sn´1 “ 2n ` 2tn{2u “ an so we 
an use the indu
tion. In parti
ular,

S2k´1 “ 22k ` 2k`1 ´ 3.

Note that, if n ě 3, then 2rn{2s ě 22 ą 3, so

Sn´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3 ą 2n ` 2tn{2u “ an.

Also noti
e that Sn´1 ´ an “ 2rn{2s ´ 3 ă an.

The main tool of the solution is the following 
laim.

Claim 1. Assume that b is a positive integer su
h that Sn´1 ´ an ă b ă an for some n ě 3.

Then b „ Sn´1 ´ b.

Proof. As seen above, we have Sn´1 ą an. Denote c “ Sn´1 ´ b; then Sn´1 ´ an ă c ă an, so

the roles of b and c are symmetri
al.

Assume that b is representable. The representation 
annot 
ontain ai with i ě n, sin
e

b ă an. So b is the sum of some subset of ta0, a1, . . . , an´1u; then c is the sum of the 
omplement.

The 
onverse is obtained by swapping b and c. l

We also need the following version of this 
laim.

Claim 2. For any n ě 3, the number an 
an be represented as a sum of two or more distin
t

terms of the sequen
e if and only if Sn´1 ´ an “ 2rn{2s ´ 3 is representable.

Proof. Denote c “ Sn´1 ´ an ă an. If an satis�es the required 
ondition, then it is the sum

of some subset of ta0, a1, . . . , an´1u; then c is the sum of the 
omplement. Conversely, if c is

representable, then its representation 
onsists only of the numbers from ta0, . . . , an´1u, so an is

the sum of the 
omplement. l

By Claim 2, in order to prove the problem statement, it su�
es to �nd in�nitely many

representable numbers of the form 2t ´ 3, as well as in�nitely many non-representable ones.

Claim 3. For every t ě 3, we have 2t ´ 3 „ 24t´6 ´ 3, and 24t´6 ´ 3 ą 2t ´ 3.

Proof. The inequality follows from t ě 3. In order to prove the equivalen
e, we apply Claim 1

twi
e in the following manner.

First, sin
e S2t´3 ´ a2t´2 “ 2t´1 ´ 3 ă 2t ´ 3 ă 22t´2 ` 2t´1 “ a2t´2, by Claim 1 we have

2t ´ 3 „ S2t´3 ´ p2t ´ 3q “ 22t´2
.

Se
ond, sin
e S4t´7 ´ a4t´6 “ 22t´3 ´ 3 ă 22t´2 ă 24t´6 ` 22t´3 “ a4t´6, by Claim 1 we have

22t´2 „ S4t´7 ´ 22t´2 “ 24t´6 ´ 3.

Therefore, 2t ´ 3 „ 22t´2 „ 24t´6 ´ 3, as required. l

Now it is easy to �nd the required numbers. Indeed, the number 23 ´ 3 “ 5 “ a0 ` a1 is

representable, so Claim 3 provides an in�nite sequen
e of representable numbers

23 ´ 3 „ 26 ´ 3 „ 218 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
On the other hand, the number 27 ´ 3 “ 125 is non-representable (sin
e by Claim 1 we have

125 „ S6 ´ 125 “ 24 „ S4 ´ 24 “ 17 „ S3 ´ 17 “ 4 whi
h is 
learly non-representable). So

Claim 3 provides an in�nite sequen
e of non-representable numbers

27 ´ 3 „ 222 ´ 3 „ 282 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
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Solution 2. We keep the notion of representability and the notation Sn from the previous

solution. We say that an index n is good if an writes as a sum of smaller terms from the

sequen
e a0, a1, . . .. Otherwise we say it is bad. We must prove that there are in�nitely many

good indi
es, as well as in�nitely many bad ones.

Lemma 1. If m ě 0 is an integer, then 4m is representable if and only if either of 2m ` 1 and

2m ` 2 is good.

Proof. The 
ase m “ 0 is obvious, so we may assume that m ě 1. Let n “ 2m ` 1 or 2m ` 2.

Then n ě 3. We noti
e that

Sn´1 ă an´2 ` an.

The inequality writes as 2n ` 2rn{2s ` 2tn{2u ´ 3 ă 2n ` 2tn{2u ` 2n´2 ` 2tn{2u´1
, i.e. as 2rn{2s ă

2n´2 ` 2tn{2u´1 ` 3. If n ě 4, then n{2 ď n ´ 2, so rn{2s ď n ´ 2 and 2rn{2s ď 2n´2
. For n “ 3

the inequality veri�es separately.

If n is good, then an writes as an “ ai1 ` ¨ ¨ ¨ ` air , where r ě 2 and i1 ă ¨ ¨ ¨ ă ir ă n.

Then ir “ n ´ 1 and ir´1 “ n ´ 2, for if n ´ 1 or n ´ 2 is missing from the sequen
e i1, . . . , ir,

then ai1 ` ¨ ¨ ¨ ` air ď a0 ` ¨ ¨ ¨ ` an´3 ` an´1 “ Sn´1 ´ an´2 ă an. Thus, if n is good, then both

an ´ an´1 and an ´ an´1 ´ an´2 are representable.

We now 
onsider the 
ases n “ 2m ` 1 and n “ 2m ` 2 separately.

If n “ 2m ` 1, then an ´ an´1 “ a2m`1 ´ a2m “ p22m`1 ` 2mq ´ p22m ` 2mq “ 22m. So we

proved that, if 2m ` 1 is good, then 22m is representable. Conversely, if 22m is representable,

then 22m ă a2m, so 22m is a sum of some distin
t terms ai with i ă 2m. It follows that

a2m`1 “ a2m ` 22m writes as a2m plus a sum of some distin
t terms ai with i ă 2m. Hen
e

2m ` 1 is good.

If n “ 2m ` 2, then an ´ an´1 ´ an´2 “ a2m`2 ´ a2m`1 ´ a2m “ p22m`2 ` 2m`1q ´ p22m`1 `
2mq ´ p22m ` 2mq “ 22m. So we proved that, if 2m ` 2 is good, then 22m is representable.

Conversely, if 22m is representable, then, as seen in the previous 
ase, it writes as a sum of some

distin
t terms ai with i ă 2m. Hen
e a2m`2 “ a2m`1 ` a2m ` 22m writes as a2m`1 ` a2m plus a

sum of some distin
t terms ai with i ă 2m. Thus 2m ` 2 is good. l

Lemma 2. If k ě 2, then 24k´2
is representable if and only if 2k`1

is representable.

In parti
ular, if s ě 2, then 4s is representable if and only if 44s´3
is representable. Also,

44s´3 ą 4s.

Proof. We have 24k´2 ă a4k´2, so in a representation of 24k´2
we 
an have only terms ai with

i ď 4k ´ 3. Noti
e that

a0 ` ¨ ¨ ¨ ` a4k´3 “ 24k´2 ` 22k ´ 3 ă 24k´2 ` 22k ` 2k “ 24k´2 ` a2k.

Hen
e, any representation of 24k´2
must 
ontain all terms from a2k to a4k´3. (If any of these

terms is missing, then the sum of the remaining ones is ď pa0 ` ¨ ¨ ¨ ` a4k´3q ´ a2k ă 24k´2
.)

Hen
e, if 24k´2
is representable, then 24k´2 ´ ř4k´3

i“2k ai is representable. But

24k´2 ´
4k´3ÿ

i“2k

ai “ 24k´2 ´ pS4k´3 ´ S2k´1q “ 24k´2 ´ p24k´2 ` 22k ´ 3q ` p22k ` 2k`1 ´ 3q “ 2k`1.

So, if 24k´2
is representable, then 2k`1

is representable. Conversely, if 2k`1
is representable,

then 2k`1 ă 22k ` 2k “ a2k, so 2k`1
writes as a sum of some distin
t terms ai with i ă 2k. It

follows that 24k´2 “ ř4k´3

i“2k ai ` 2k`1
writes as a4k´3 ` a4k´4 ` ¨ ¨ ¨ ` a2k plus the sum of some

distin
t terms ai with i ă 2k. Hen
e 24k´2
is representable.

For the se
ond statement, if s ě 2, then we just take k “ 2s´1 and we noti
e that 2k`1 “ 4s

and 24k´2 “ 44s´3
. Also, s ě 2 implies that 4s ´ 3 ą s. l
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Now 42 “ a2`a3 is representable, whereas 4
6 “ 4096 is not. Indeed, note that 46 “ 212 ă a12,

so the only available terms for a representation are a0, . . . , a11, i.e., 2, 3, 6, 10, 20, 36, 72,

136, 272, 528, 1056, 2080. Their sum is S11 “ 4221, whi
h ex
eeds 4096 by 125. Then any

representation of 4096 must 
ontain all the terms from a0, . . . , a11 that are greater that 125,

i.e., 136, 272, 528, 1056, 2080. Their sum is 4072. Sin
e 4096´ 4072 “ 24 and 24 is 
learly not

representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we 
an obtain in�nitely many rep-

resentable powers of 4, as well as in�nitely many non-representable ones. By Lemma 1, this

solves our problem.
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N4.

Let a1, a2, . . ., an, . . . be a sequen
e of positive integers su
h that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m su
h that an “ an`1 for all n ě m.

(Mongolia)

Solution 1. The argument hinges on the following two fa
ts: Let a, b, c be positive integers

su
h that N “ b{c ` pc ´ bq{a is an integer.

(1) If gcdpa, cq “ 1, then c divides b ; and

(2) If gcdpa, b, cq “ 1, then gcdpa, bq “ 1.

To prove (1), write ab “ cpaN ` b ´ cq. Sin
e gcdpa, cq “ 1, it follows that c divides b. To

prove (2), write c2 ´ bc “ apcN ´ bq to infer that a divides c2 ´ bc. Letting d “ gcdpa, bq, it
follows that d divides c2, and sin
e the two are relatively prime by hypothesis, d “ 1.

Now, let sn “ a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` an´1{an ` an{a1, let δn “ gcdpa1, an, an`1q and write

sn`1 ´ sn “ an

an`1

` an`1 ´ an

a1
“ an{δn

an`1{δn
` an`1{δn ´ an{δn

a1{δn
.

Let n ě k. Sin
e gcdpa1{δn, an{δn, an`1{δnq “ 1, it follows by (2) that gcdpa1{δn, an{δnq “ 1.

Let dn “ gcdpa1, anq. Then dn “ δn ¨ gcdpa1{δn, an{δnq “ δn, so dn divides an`1, and therefore

dn divides dn`1.

Consequently, from some rank on, the dn form a nonde
reasing sequen
e of integers not

ex
eeding a1, so dn “ d for all n ě ℓ, where ℓ is some positive integer.

Finally, sin
e gcdpa1{d, an`1{dq “ 1, it follows by (1) that an`1{d divides an{d, so an ě an`1

for all n ě ℓ. The 
on
lusion follows.

Solution 2. We use the same notation sn. This time, we explore the exponents of primes in

the prime fa
torizations of the an for n ě k.

To start, for every n ě k, we know that the number

sn`1 ´ sn “ an

an`1

` an`1

a1
´ an

a1
p˚q

is integer. Multiplying it by a1 we obtain that a1an{an`1 is integer as well, so that an`1 | a1an.
This means that an | an´k

1 ak, so all prime divisors of an are among those of a1ak. There are

�nitely many su
h primes; therefore, it su�
es to prove that the exponent of ea
h of them in

the prime fa
torization of an is eventually 
onstant.

Choose any prime p | a1ak. Re
all that vppqq is the standard notation for the exponent of p

in the prime fa
torization of a nonzero rational number q. Say that an index n ě k is large if

vppanq ě vppa1q. We separate two 
ases.

Case 1: There exists a large index n.

If vppan`1q ă vppa1q, then vppan{an`1q and vppan{a1q are nonnegative, while vppan`1{a1q ă 0;

hen
e p˚q 
annot be an integer. This 
ontradi
tion shows that index n ` 1 is also large.

On the other hand, if vppan`1q ą vppanq, then vppan{an`1q ă 0, while vp
`
pan`1´anq{a1

˘
ě 0,

so p˚q is not integer again. Thus, vppa1q ď vppan`1q ď vppanq.
The above arguments 
an now be applied su

essively to indi
es n ` 1, n ` 2, . . . , showing

that all the indi
es greater than n are large, and the sequen
e vppanq, vppan`1q, vppan`2q, . . . is
nonin
reasing � hen
e eventually 
onstant.
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Case 2: There is no large index.

We have vppa1q ą vppanq for all n ě k. If we had vppan`1q ă vppanq for some n ě k,

then vppan`1{a1q ă vppan{a1q ă 0 ă vppan{an`1q whi
h would also yield that p˚q is not integer.
Therefore, in this 
ase the sequen
e vppakq, vppak`1q, vppak`2q, . . . is nonde
reasing and bounded
by vppa1q from above; hen
e it is also eventually 
onstant.

Comment. Given any positive odd integer m, 
onsider the m-tuple p2, 22, . . . , 2m´1, 2mq. Appending
an in�nite string of 1's to this m-tuple yields an eventually 
onstant sequen
e of integers satisfying

the 
ondition in the statement, and shows that the rank from whi
h the sequen
e stabilises may be

arbitrarily large.

There are more sophisti
ated examples. The solution to part (b) of 10532, Amer. Math. Monthly,

Vol. 105 No. 8 (O
t. 1998), 775�777 (available at https://www.jstor.org/stable/2589009), shows

that, for every integer m ě 5, there exists an m-tuple pa1, a2, . . . , amq of pairwise distin
t positive

integers su
h that gcdpa1, a2q “ gcdpa2, a3q “ ¨ ¨ ¨ “ gcdpam´1, amq “ gcdpam, a1q “ 1, and the sum

a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` am´1{am ` am{a1 is an integer. Letting am`k “ a1, k “ 1, 2, . . ., extends su
h an

m-tuple to an eventually 
onstant sequen
e of positive integers satisfying the 
ondition in the statement

of the problem at hand.

Here is the example given by the proposers of 10532. Let b1 “ 2, let bk`1 “ 1 ` b1 ¨ ¨ ¨ bk “
1` bkpbk ´1q, k ě 1, and set Bm “ b1 ¨ ¨ ¨ bm´4 “ bm´3 ´1. The m-tuple pa1, a2, . . . , amq de�ned below

satis�es the required 
onditions:

a1 “ 1, a2 “ p8Bm ` 1qBm ` 8, a3 “ 8Bm ` 1, ak “ bm´k for 4 ď k ď m ´ 1,

am “ a2

2
¨ a3 ¨ Bm

2
“
ˆ
1

2
p8Bm ` 1qBm ` 4

˙
¨ p8Bm ` 1q ¨ Bm

2
.

It is readily 
he
ked that a1 ă am´1 ă am´2 ă ¨ ¨ ¨ ă a3 ă a2 ă am. For further details we refer to

the solution mentioned above. A
quaintan
e with this example (or more elaborated examples derived

from) o�ers no advantage in ta
kling the problem.

https://www.jstor.org/stable/2589009
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N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t. p˚q

Is it possible that both xy and zt are perfe
t squares?

(Russia)

Answer: No.

Solution 1. Arguing indire
tly, assume that xy “ a2 and zt “ c2 with a, c ą 0.

Suppose that the number x ` y “ z ` t is odd. Then x and y have opposite parity, as well

as z and t. This means that both xy and zt are even, as well as xy´zt “ x`y; a 
ontradi
tion.

Thus, x ` y is even, so the number s “ x`y

2
“ z`t

2
is a positive integer.

Next, we set b “ |x´y|
2

, d “ |z´t|
2
. Now the problem 
onditions yield

s2 “ a2 ` b2 “ c2 ` d2 (1)

and

2s “ a2 ´ c2 “ d2 ´ b2 (2)

(the last equality in (2) follows from (1)). We readily get from (2) that a, d ą 0.

In the sequel we will use only the relations (1) and (2), along with the fa
t that a, d, s

are positive integers, while b and c are nonnegative integers, at most one of whi
h may be

zero. Sin
e both relations are symmetri
 with respe
t to the simultaneous swappings a Ø d

and b Ø c, we assume, without loss of generality, that b ě c (and hen
e b ą 0). Therefore,

d2 “ 2s ` b2 ą c2, when
e

d2 ą c2 ` d2

2
“ s2

2
. (3)

On the other hand, sin
e d2 ´ b2 is even by (2), the numbers b and d have the same parity,

so 0 ă b ď d ´ 2. Therefore,

2s “ d2 ´ b2 ě d2 ´ pd ´ 2q2 “ 4pd ´ 1q, i.e., d ď s

2
` 1. (4)

Combining (3) and (4) we obtain

2s2 ă 4d2 ď 4
´s
2

` 1
¯2

, or ps ´ 2q2 ă 8,

whi
h yields s ď 4.

Finally, an easy 
he
k shows that ea
h number of the form s2 with 1 ď s ď 4 has a unique

representation as a sum of two squares, namely s2 “ s2 ` 02. Thus, (1) along with a, d ą 0

imply b “ c “ 0, whi
h is impossible.

Solution 2. We start with a 
omplete des
ription of all 4-tuples px, y, z, tq of positive integers
satisfying p˚q. As in the solution above, we noti
e that the numbers

s “ x ` y

2
“ z ` t

2
, p “ x ´ y

2
, and q “ z ´ t

2

are integers (we may, and will, assume that p, q ě 0). We have

2s “ xy ´ zt “ ps ` pqps ´ pq ´ ps ` qqps ´ qq “ q2 ´ p2,

so p and q have the same parity, and q ą p.
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Set now k “ q´p

2
, ℓ “ q`p

2
. Then we have s “ q2´p2

2
“ 2kℓ and hen
e

x “ s ` p “ 2kℓ ´ k ` ℓ, y “ s ´ p “ 2kℓ ` k ´ ℓ,

z “ s ` q “ 2kℓ ` k ` ℓ, t “ s ´ q “ 2kℓ ´ k ´ ℓ.
(5)

Re
all here that ℓ ě k ą 0 and, moreover, pk, ℓq ‰ p1, 1q, sin
e otherwise t “ 0.

Assume now that both xy and zt are squares. Then xyzt is also a square. On the other

hand, we have

xyzt “ p2kℓ ´ k ` ℓqp2kℓ ` k ´ ℓqp2kℓ ` k ` ℓqp2kℓ ´ k ´ ℓq
“
`
4k2ℓ2 ´ pk ´ ℓq2

˘`
4k2ℓ2 ´ pk ` ℓq2

˘
“ p4k2ℓ2 ´ k2 ´ ℓ2q2 ´ 4k2ℓ2. (6)

Denote D “ 4k2ℓ2 ´ k2 ´ ℓ2 ą 0. From (6) we get D2 ą xyzt. On the other hand,

pD ´ 1q2 “ D2 ´ 2p4k2ℓ2 ´ k2 ´ ℓ2q ` 1 “ pD2 ´ 4k2ℓ2q ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2

“ xyzt ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2 ă xyzt,

sin
e ℓ ě 2 and k ě 1. Thus pD ´ 1q2 ă xyzt ă D2
, and xyzt 
annot be a perfe
t square; a


ontradi
tion.

Comment. The �rst part of Solution 2 shows that all 4-tuples of positive integers x ě y, z ě t

satisfying p˚q have the form (5), where ℓ ě k ą 0 and ℓ ě 2. The 
onverse is also true: every pair

of positive integers ℓ ě k ą 0, ex
ept for the pair k “ ℓ “ 1, generates via (5) a 4-tuple of positive

integers satisfying p˚q.
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N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a fun
tion su
h that fpm`nq | fpmq ` fpnq for all
pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whi
h divides

all values of f .

(Mexi
o)

Solution 1. For every positive integer m, de�ne Sm “ tn : m | fpnqu.
Lemma. If the set Sm is in�nite, then Sm “ td, 2d, 3d, . . .u “ d ¨ Zą0 for some positive integer d.

Proof. Let d “ minSm; the de�nition of Sm yields m | fpdq.
Whenever n P Sm and n ą d, we have m | fpnq | fpn ´ dq ` fpdq, so m | fpn ´ dq and

therefore n ´ d P Sm. Let r ď d be the least positive integer with n ” r pmod dq; repeating
the same step, we 
an see that n ´ d, n ´ 2d, . . . , r P Sm. By the minimality of d, this shows

r “ d and therefore d | n.
Starting from an arbitrarily large element of Sm, the pro
ess above rea
hes all multiples

of d; so they all are elements of Sm. l

The solution for the problem will be split into two 
ases.

Case 1: The fun
tion f is bounded.

Call a prime p frequent if the set Sp is in�nite, i.e., if p divides fpnq for in�nitely many

positive integers n; otherwise 
all p sporadi
. Sin
e the fun
tion f is bounded, there are only

a �nite number of primes that divide at least one fpnq; so altogether there are �nitely many

numbers n su
h that fpnq has a sporadi
 prime divisor. Let N be a positive integer, greater

than all those numbers n.

Let p1, . . . , pk be the frequent primes. By the lemma we have Spi “ di ¨ Zą0 for some di.

Consider the number

n “ Nd1d2 ¨ ¨ ¨ dk ` 1.

Due to n ą N , all prime divisors of fpnq are frequent primes. Let pi be any frequent prime

divisor of fpnq. Then n P Spi, and therefore di | n. But n ” 1 pmod diq, whi
h means di “ 1.

Hen
e Spi “ 1 ¨ Zą0 “ Zą0 and therefore pi is a 
ommon divisor of all values fpnq.
Case 2: f is unbounded.

We prove that fp1q divides all fpnq.
Let a “ fp1q. Sin
e 1 P Sa, by the lemma it su�
es to prove that Sa is an in�nite set.

Call a positive integer p a peak if fppq ą max
`
fp1q, . . . , fpp ´ 1q

˘
. Sin
e f is not bounded,

there are in�nitely many peaks. Let 1 “ p1 ă p2 ă . . . be the sequen
e of all peaks, and let

hk “ fppkq. Noti
e that for any peak pi and for any k ă pi, we have fppiq | fpkq ` fppi ´ kq ă
2fppiq, hen
e

fpkq ` fppi ´ kq “ fppiq “ hi. p1q
By the pigeonhole prin
iple, among the numbers h1, h2, . . . there are in�nitely many that

are 
ongruent modulo a. Let k0 ă k1 ă k2 ă . . . be an in�nite sequen
e of positive integers

su
h that hk0 ” hk1 ” . . . pmod aq. Noti
e that

fppki ´ pk0q “ fppkiq ´ fppk0q “ hki ´ hk0 ” 0 pmod aq,

so pki ´ pk0 P Sa for all i “ 1, 2, . . .. This provides in�nitely many elements in Sa.

Hen
e, Sa is an in�nite set, and therefore fp1q “ a divides fpnq for every n.

Comment. As an extension of the solution above, it 
an be proven that if f is not bounded then

fpnq “ an with a “ fp1q.
Take an arbitrary positive integer n; we will show that fpn ` 1q “ fpnq ` a. Then it follows by

indu
tion that fpnq “ an.
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Take a peak p su
h that p ą n ` 2 and h “ fppq ą fpnq ` 2a. By (1) we have fpp ´ 1q “
fppq ´ fp1q “ h ´ a and fpn ` 1q “ fppq ´ fpp ´ n ´ 1q “ h ´ fpp ´ n ´ 1q. From h ´ a “ fpp ´ 1q |
fpnq ` fpp ´ n ´ 1q ă fpnq ` h ă 2ph ´ aq we get fpnq ` fpp ´ n ´ 1q “ h ´ a. Then

fpn ` 1q ´ fpnq “
`
h ´ fpp ´ n ´ 1q

˘
´
`
h ´ a ´ fpp ´ n ´ 1q

˘
“ a.

On the other hand, there exists a wide family of bounded fun
tions satisfying the required proper-

ties. Here we present a few examples:

fpnq “ c; fpnq “
#
2c if n is even

c if n is odd;

fpnq “
#
2018c if n ď 2018

c if n ą 2018.

Solution 2. Let dn “ gcd
`
fpnq, fp1q

˘
. From dn`1 | fp1q and dn`1 | fpn ` 1q | fpnq ` fp1q,

we 
an see that dn`1 | fpnq; then dn`1 | gcd
`
fpnq, fp1q

˘
“ dn. So the sequen
e d1, d2, . . .

is nonin
reasing in the sense that every element is a divisor of the previous elements. Let

d “ minpd1, d2, . . .q “ gcdpd1.d2, . . .q “ gcd
`
fp1q, fp2q, . . .

˘
; we have to prove d ě 2.

For the sake of 
ontradi
tion, suppose that the statement is wrong, so d “ 1; that means

there is some index n0 su
h that dn “ 1 for every n ě n0, i.e., fpnq is 
oprime with fp1q.
Claim 1. If 2k ě n0 then fp2kq ď 2k.

Proof. By the 
ondition, fp2nq | 2fpnq; a trivial indu
tion yields fp2kq | 2kfp1q. If 2k ě n0 then

fp2kq is 
oprime with fp1q, so fp2kq is a divisor of 2k. l

Claim 2. There is a 
onstant C su
h that fpnq ă n ` C for every n.

Proof. Take the �rst power of 2 whi
h is greater than or equal to n0: let K “ 2k ě n0. By

Claim 1, we have fpKq ď K. Noti
e that fpn ` Kq | fpnq ` fpKq implies fpn ` Kq ď
fpnq ` fpKq ď fpnq ` K. If n “ tK ` r for some t ě 0 and 1 ď r ď K, then we 
on
lude

fpnq ď K ` fpn ´ Kq ď 2K ` fpn ´ 2Kq ď . . . ď tK ` fprq ă n ` max
`
fp1q, fp2q, . . . , fpKq

˘
,

so the 
laim is true with C “ max
`
fp1q, . . . , fpKq

˘
. l

Claim 3. If a, b P Zą0 are 
oprime then gcd
`
fpaq, fpbq

˘
| fp1q. In parti
ular, if a, b ě n0 are


oprime then fpaq and fpbq are 
oprime.

Proof. Let d “ gcd
`
fpaq, fpbq

˘
. We 
an repli
ate Eu
lid's algorithm. Formally, apply indu
tion

on a ` b. If a “ 1 or b “ 1 then we already have d | fp1q.
Without loss of generality, suppose 1 ă a ă b. Then d | fpaq and d | fpbq | fpaq ` fpb ´ aq,

so d | fpb´aq. Therefore d divides gcd
`
fpaq, fpb´aq

˘
whi
h is a divisor of fp1q by the indu
tion

hypothesis. l

Let p1 ă p2 ă . . . be the sequen
e of all prime numbers; for every k, let qk be the lowest

power of pk with qk ě n0. (Noti
e that there are only �nitely many positive integers with

qk ‰ pk.)

Take a positive integer N , and 
onsider the numbers

fp1q, fpq1q, fpq2q, . . . , fpqNq.
Here we have N ` 1 numbers, ea
h being greater than 1, and they are pairwise 
oprime by

Claim 3. Therefore, they have at least N `1 di�erent prime divisors in total, and their greatest

prime divisor is at least pN`1. Hen
e, maxpfp1q, fpq1q, . . . , fpqNqq ě pN`1.

Choose N su
h that maxpq1, . . . , qNq “ pN (this is a
hieved if N is su�
iently large), and

pN`1 ´ pN ą C (that is possible, be
ause there are arbitrarily long gaps between the primes).

Then we establish a 
ontradi
tion

pN`1 ď maxpfp1q, fpq1q, . . . , fpqNqq ă maxp1 ` C, q1 ` C, . . . , qN ` Cq “ pN ` C ă pN`1

whi
h proves the statement.
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N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distin
t

positive integers not ex
eeding 5n. Suppose that the sequen
e

a1

b1
,
a2

b2
, . . . ,

an

bn
p1q

forms an arithmeti
 progression. Prove that the terms of the sequen
e are equal.

(Thailand)

Solution. Suppose that (1) is an arithmeti
 progression with nonzero di�eren
e. Let the

di�eren
e be ∆ “ c
d
, where d ą 0 and c, d are 
oprime.

We will show that too many denominators bi should be divisible by d. To this end, for any

1 ď i ď n and any prime divisor p of d, say that the index i is p-wrong, if vppbiq ă vppdq. (vppxq
stands for the exponent of p in the prime fa
torisation of x.)

Claim 1. For any prime p, all p-wrong indi
es are 
ongruent modulo p. In other words, the

p-wrong indi
es (if they exist) are in
luded in an arithmeti
 progression with di�eren
e p.

Proof. Let α “ vppdq. For the sake of 
ontradi
tion, suppose that i and j are p-wrong indi
es

(i.e., none of bi and bj is divisible by pα) su
h that i ı j pmod pq. Then the least 
ommon

denominator of

ai
bi
and

aj
bj
is not divisible by pα. But this is impossible be
ause in their di�eren
e,

pi ´ jq∆ “ pi´jqc
d

, the numerator is 
oprime to p, but pα divides the denominator d. l

Claim 2. d has no prime divisors greater than 5.

Proof. Suppose that p ě 7 is a prime divisor of d. Among the indi
es 1, 2, . . . , n, at mostP
n
p

T
ă n

p
` 1 are p-wrong, so p divides at least

p´1

p
n ´ 1 of b1, . . . , bn. Sin
e these denominators

are distin
t,

5n ě max
 
bi : p | bi

(
ě
ˆ
p ´ 1

p
n ´ 1

˙
p “ pp ´ 1qpn ´ 1q ´ 1 ě 6pn ´ 1q ´ 1 ą 5n,

a 
ontradi
tion. l

Claim 3. For every 0 ď k ď n ´ 30, among the denominators bk`1, bk`2, . . . , bk`30, at least

ϕp30q “ 8 are divisible by d.

Proof. By Claim 1, the 2-wrong, 3-wrong and 5-wrong indi
es 
an be 
overed by three arithmeti


progressions with di�eren
es 2, 3 and 5. By a simple in
lusion-ex
lusion, p2´1q¨p3´1q¨p5´1q “ 8

indi
es are not 
overed; by Claim 2, we have d | bi for every un
overed index i. l

Claim 4. |∆| ă 20
n´2

and d ą n´2
20

.

Proof. From the sequen
e (1), remove all fra
tions with bn ă n
2
, There remain at least

n
2

fra
tions, and they 
annot ex
eed

5n
n{2

“ 10. So we have at least

n
2
elements of the arithmeti


progression (1) in the interval p0, 10s, hen
e the di�eren
e must be below 10
n{2´1

“ 20
n´2

.

The se
ond inequality follows from

1
d

ď |c|
d

“ |∆|. l

Now we have everything to get the �nal 
ontradi
tion. By Claim 3, we have d | bi for at
least

X
n
30

\
¨ 8 indi
es i. By Claim 4, we have d ě n´2

20
. Therefore,

5n ě max
 
bi : d | bi

(
ě
´Y n

30

]
¨ 8
¯

¨ d ą
´ n

30
´ 1

¯
¨ 8 ¨ n ´ 2

20
ą 5n.

Comment 1. It is possible that all terms in (1) are equal, for example with ai “ 2i´1 and bi “ 4i´2

we have

ai
bi

“ 1
2
.

Comment 2. The bound 5n in the statement is far from sharp; the solution above 
an be modi�ed

to work for 9n. For large n, the bound 5n 
an be repla
ed by n
3

2
´ε
.
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