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Problems
Algebra

Let Q- denote the set of all positive rational numbers. Determine all functions
f: Q-9 — Q¢ satisfying
f(a?f(y)?) = f(2)*f(y)
for all z,y € Q..
(Switzerland)

Find all positive integers n > 3 for which there exist real numbers ay,as, ..., a,,
Gpi1 = G1, Qpio = ag such that
a;air 1+ 1 =a;40
forall:=1,2,...,n.
(Slovakia)

Given any set S of positive integers, show that at least one of the following two
assertions holds:

(1) There exist distinct finite subsets F' and G of S such that >, _.1/z =5 . 1/z;

(2) There exists a positive rational number r < 1 such that ) _.1/z # r for all finite subsets
FofsS.

(Luzembourg)

Let ag,aq,as,... be a sequence of real numbers such that ayg = 0, a; = 1, and for
every n = 2 there exists 1 < k < n satisfying
Ap—1 + "+ Qpg

’ .

Ay =

Find the maximal possible value of asgigs — a9917.

Determine all functions f : (0,00) — R satisfying
(a4 1) 1) = 16w + 7 (2)

(Belgium,)

for all z,y > 0.
(South Korea)

Let m,n > 2 be integers. Let f(z1,...,2,) be a polynomial with real coefficients
such that

flxy, ... x,) = {
Prove that the total degree of f is at least n.

1+ ...+ x,

J for every xl,...,xne{O,l,...,m—l}.
m

(Brazil)
- Find the maximal value of

b c 3/ d
S=3— 4 + 5 + A/ ——,
b+ 7 c+ 7 d+7 a+7

where a, b, ¢, d are nonnegative real numbers which satisfy a + b + ¢ + d = 100.

(Taiwan)
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Combinatorics

Let n > 3 be an integer. Prove that there exists a set S of 2n positive integers
satisfying the following property: For every m = 2,3,...,n the set S can be partitioned into

two subsets with equal sums of elements, with one of subsets of cardinality m.
(Iceland)

Queenie and Horst play a game on a 20 x 20 chessboard. In the beginning the board
is empty. In every turn, Horst places a black knight on an empty square in such a way that his
new knight does not attack any previous knights. Then Queenie places a white queen on an
empty square. The game gets finished when somebody cannot move.
Find the maximal positive K such that, regardless of the strategy of Queenie, Horst can
put at least K knights on the board.
(Armenia)

Let n be a given positive integer. Sisyphus performs a sequence of turns on a board
consisting of n + 1 squares in a row, numbered 0 to n from left to right. Initially, n stones
are put into square 0, and the other squares are empty. At every turn, Sisyphus chooses any
nonempty square, say with k stones, takes one of those stones and moves it to the right by at
most k squares (the stone should stay within the board). Sisyphus’ aim is to move all n stones
to square n.

Prove that Sisyphus cannot reach the aim in less than

FR IR FIE
1 2 3 n
turns. (As usual, [x]| stands for the least integer not smaller than x.)
(Netherlands)

An anti-Pascal pyramid is a finite set of numbers, placed in a triangle-shaped array
so that the first row of the array contains one number, the second row contains two numbers,
the third row contains three numbers and so on; and, except for the numbers in the bottom
row, each number equals the absolute value of the difference of the two numbers below it. For
instance, the triangle below is an anti-Pascal pyramid with four rows, in which every integer
from 1 to 1+ 2+ 3 + 4 = 10 occurs exactly once:

8§ 3 10 9.

Is it possible to form an anti-Pascal pyramid with 2018 rows, using every integer from 1 to
142+ -4 2018 exactly once?
(Iran)

Let k be a positive integer. The organising committee of a tennis tournament is to
schedule the matches for 2k players so that every two players play once, each day exactly one
match is played, and each player arrives to the tournament site the day of his first match, and
departs the day of his last match. For every day a player is present on the tournament, the
committee has to pay 1 coin to the hotel. The organisers want to design the schedule so as to
minimise the total cost of all players’ stays. Determine this minimum cost.

(Russia)



Shortlisted problems 5

- Let a and b be distinct positive integers. The following infinite process takes place on
an initially empty board.

(7) If there is at least a pair of equal numbers on the board, we choose such a pair and
increase one of its components by a and the other by b.

(27) If no such pair exists, we write down two times the number 0.

Prove that, no matter how we make the choices in (i), operation (i) will be performed only

finitely many times.
(Serbia)

- Consider 2018 pairwise crossing circles no three of which are concurrent. These circles
subdivide the plane into regions bounded by circular edges that meet at vertices. Notice that
there are an even number of vertices on each circle. Given the circle, alternately colour the
vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice —
once for each of the two circles that cross at that point. If the two colourings agree at a vertex,
then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains

at least 2061 yellow points, then the vertices of some region are all yellow.
(India)
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Geometry

Let ABC be an acute-angled triangle with circumcircle I'. Let D and E be points on
the segments AB and AC, respectively, such that AD = AFE. The perpendicular bisectors of
the segments BD and C'F intersect the small arcs AB and AC at points F' and G respectively.
Prove that DE || FG.

(Greece)

Let ABC be a triangle with AB = AC, and let M be the midpoint of BC. Let P be
a point such that PB < PC' and PA is parallel to BC. Let X and Y be points on the lines
PB and PC, respectively, so that B lies on the segment PX, C' lies on the segment PY, and
/PXM = /ZPY M. Prove that the quadrilateral APXY is cyclic.

(Australia)

A circle w of radius 1 is given. A collection T of triangles is called good, if the following
conditions hold:

(i) each triangle from T is inscribed in w;

(74) no two triangles from 7" have a common interior point.

Determine all positive real numbers ¢ such that, for each positive integer n, there exists a

good collection of n triangles, each of perimeter greater than t.
(South Africa)

A point T is chosen inside a triangle ABC. Let A;, By, and C] be the reflections
of T'in BC, CA, and AB, respectively. Let €2 be the circumcircle of the triangle A;B;C}.
The lines A;T, B;T, and C;T meet ) again at Ay, By, and (5, respectively. Prove that the
lines AAy, BB, and CCy are concurrent on €.

(Mongolia)

Let ABC be a triangle with circumcircle w and incentre I. A line ¢ intersects the
lines AI, BI, and CI at points D, E, and F, respectively, distinct from the points A, B, C,
and I. The perpendicular bisectors z, y, and z of the segments AD, BE, and C'F, respectively

determine a triangle ©. Show that the circumcircle of the triangle © is tangent to w.
(Denmark)

A convex quadrilateral ABCD satisfies AB-CD = BC - DA. A point X is chosen
inside the quadrilateral so that /X AB = ZXCD and Z/XBC = ZXDA. Prove that ZAX B+
/ZCXD = 180°.

(Poland)

- Let O be the circumcentre, and €2 be the circumcircle of an acute-angled triangle ABC'.
Let P be an arbitrary point on €, distinct from A, B, C, and their antipodes in 2. Denote
the circumcentres of the triangles AOP, BOP, and COP by O,4, Opg, and Og, respectively.
The lines ¢4, {p, and - perpendicular to BC, C'A, and AB pass through O4, Op, and Og,
respectively. Prove that the circumcircle of the triangle formed by ¢4, g, and ¢ is tangent to
the line OP.

(Russia)
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Number Theory

Determine all pairs (n, k) of distinct positive integers such that there exists a positive
integer s for which the numbers of divisors of sn and of sk are equal.
(Ukraine)

N2. Let n > 1 be a positive integer. Each cell of an n x n table contains an integer.
Suppose that the following conditions are satisfied:

(1) Each number in the table is congruent to 1 modulo n;

(72) The sum of numbers in any row, as well as the sum of numbers in any column, is congruent
to n modulo n?.

Let R; be the product of the numbers in the i"" row, and C; be the product of the numbers in
the j'" column. Prove that the sums Ry +---+ R,, and C; + - - - + C,, are congruent modulo n*.
(Indonesia)

Define the sequence ag, aq,as, ... by a, = 2" + 2"/2l. Prove that there are infinitely
many terms of the sequence which can be expressed as a sum of (two or more) distinct terms
of the sequence, as well as infinitely many of those which cannot be expressed in such a way.

(Serbia)
Let aq, as, ..., a,, ... be a sequence of positive integers such that

a1 a2 Ap—1 ap
a2 a3 G, a1

is an integer for all n > k, where k is some positive integer. Prove that there exists a positive
integer m such that a, = a, for all n > m.

(Mongolia)
Four positive integers z, ¥, 2z, and ¢ satisfy the relations
ry—zt=rv+y=z+1.
Is it possible that both zy and zt are perfect squares?
(Russia)

- Let f:{1,2,3,...} — {2,3,...} be a function such that f(m + n) | f(m)+ f(n) for
all pairs m, n of positive integers. Prove that there exists a positive integer ¢ > 1 which divides

all values of f.
(Mezico)

- Let n > 2018 be an integer, and let ay,as, ..., ay,,b1,be, ..., b, be pairwise distinct
positive integers not exceeding 5n. Suppose that the sequence

ay as Ay,

b—l, b—27...7 bn

forms an arithmetic progression. Prove that the terms of the sequence are equal.
(Thailand)
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Solutions

Algebra

Let Q.o denote the set of all positive rational numbers. Determine all functions

[ Qs0 — Qs satisfying
(@ fw)?) = f(@)°f(y) ()

for all x,y € Q.
(Switzerland)

Answer: f(z) =1 for all x € Q.

Solution. Take any a,b € Q~¢. By substituting x = f(a), y = b and x = f(b), y = a into (*)
we get

which yields

for all a,b € Q.

In other words, this shows that there exists a constant C' € Q- such that f(f(a))2 = Cf(a),

(f(f<a))>2 = M for all a € Q. (1)

C C
Denote by f*(x) = f(f(...(f(z))...)) the n'titeration of f. Equality (1) yields
—_—

n

- (2= (- ()

for all positive integer n. So, f(a)/C is the 2"-th power of a rational number for all positive
integer n. This is impossible unless f(a)/C' = 1, since otherwise the exponent of some prime in
the prime decomposition of f(a)/C is not divisible by sufficiently large powers of 2. Therefore,
f(a) = C for all a € Q.

Finally, after substituting f = C into (*) we get C' = C3, whence C' = 1. So f(z) = 1 is the
unique function satisfying ().

Comment 1. There are several variations of the solution above. For instance, one may start with
finding f(1) = 1. To do this, let d = f(1). By substituting 2 = y = 1 and = d?, y = 1 into (x)
we get f(d?) = d® and f(d°) = f(d*)?-d = d’. By substituting now = = 1, y = d?> we obtain
f(d®) = d?-d?® = d°. Therefore, d” = f(d°) = d°, whence d = 1.

After that, the rest of the solution simplifies a bit, since we already know that C' = W = 1.
Hence equation (1) becomes merely f(f(a))? = f(a), which yields f(a) = 1 in a similar manner.

Comment 2. There exist nonconstant functions f: RT — R™ satisfying (x) for all real x,y > 0 —

e.g., f(z) = V2.
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Find all positive integers n > 3 for which there exist real numbers aq,ao,...,a,,
Gpy1 = A1, Qpio = ag such that
a1 + 1= a9

foralli=1,2,...,n.
(Slovakia)

Answer: n can be any multiple of 3.

Solution 1. For the sake of convenience, extend the sequence aq,...,a,42 to an infinite
periodic sequence with period n. (n is not necessarily the shortest period.)

If n is divisible by 3, then (aj,as,...) = (—=1,—1,2,—1,—1,2,...) is an obvious solution.

We will show that in every periodic sequence satisfying the recurrence, each positive term is
followed by two negative values, and after them the next number is positive again. From this,
it follows that n is divisible by 3.

If the sequence contains two consecutive positive numbers a;, a; 1, then a; 1o = a;a;.1+1 > 1,
so the next value is positive as well; by induction, all numbers are positive and greater than 1.
But then a;19 = a;a;41 +1 > 1-a;41 +1 > a;;1 for every index ¢, which is impossible: our
sequence is periodic, so it cannot increase everywhere.

If the number 0 occurs in the sequence, a; = 0 for some index 4, then it follows that
a;+1 = a;_1a; + 1 and a;, o = a;a;,1 + 1 are two consecutive positive elements in the sequences
and we get the same contradiction again.

Notice that after any two consecutive negative numbers the next one must be positive: if
a; < 0 and a;,1 <0, then a;,5 = aja;,1 +1 > 1 > 0. Hence, the positive and negative numbers
follow each other in such a way that each positive term is followed by one or two negative values
and then comes the next positive term.

Consider the case when the positive and negative values alternate. So, if a; is a negative
value then a;,q is positive, a;,o is negative and a;, 3 is positive again.

Notice that a;a;.1 +1 = a;.0 < 0 < a;43 = a;11a;49 + 1; by a;4.1 > 0 we conclude a; < a;;».
Hence, the negative values form an infinite increasing subsequence, a; < a;10 < @j1q4 < ...,
which is not possible, because the sequence is periodic.

The only case left is when there are consecutive negative numbers in the sequence. Suppose
that a; and a;,, are negative; then a;,» = a;a;,1 + 1 > 1. The number a;,3 must be negative.
We show that a;,4 also must be negative.

Notice that a;,3 is negative and a;,4 = ;120,23 +1 < 1 < a;a;41 + 1 = a;42, SO

Ai45 — Qj44 = (ai+3ai+4 + 1) - (ai+2ai+3 + 1) = ai+3(ai+4 - ai+2) > 0,

therefore a;,5 > a;,4. Since at most one of a;,4 and a;,5 can be positive, that means that a;,4
must be negative.

Now a;,3 and a;,4 are negative and a;,5 is positive; so after two negative and a positive
terms, the next three terms repeat the same pattern. That completes the solution.

Solution 2. We prove that the shortest period of the sequence must be 3. Then it follows
that n must be divisible by 3.

Notice that the equation 2> + 1 = x has no real root, so the numbers a4, ..., a, cannot be
all equal, hence the shortest period of the sequence cannot be 1.

By applying the recurrence relation for < and 7 + 1,

(@iz2 — 1)aize = 4iGi410i42 = a;i(a43 — 1), SO
2
Aito — AQiy3 = Qjy2 — Q4.
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By summing over ¢ = 1,2, ..., n, we get

n

Z(ai — OJZ'+3)2 =0.

i=1

That proves that a; = a;, 3 for every index 7, so the sequence aq, ao, ... is indeed periodic with
period 3. The shortest period cannot be 1, so it must be 3; therefore, n is divisible by 3.

Comment. By solving the system of equations ab+ 1 =¢, bc+1=a, ca+1=20, it can be seen
that the pattern (—1,—1,2) is repeated in all sequences satisfying the problem conditions.
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Given any set S of positive integers, show that at least one of the following two
assertions holds:

(1) There exist distinct finite subsets F' and G of S such that >, .1/z =3, . 1/z;

(2) There exists a positive rational number r < 1 such that > _.1/z # r for all finite subsets
FofS.

(Luzembourg)

Solution 1. Argue indirectly. Agree, as usual, that the empty sum is 0 to consider rationals
in [0, 1); adjoining 0 causes no harm, since ), . 1/x = 0 for no nonempty finite subset F" of S.
For every rational r in [0, 1), let F,. be the unique finite subset of S such that >, . 1/v =r.
The argument hinges on the lemma below.

Lemma. If x is a member of S and ¢ and r are rationals in [0, 1) such that ¢ —r = 1/x, then x
is a member of F} if and only if it is not one of F,.

Proof. If x is a member of Fj, then

1 1 1 1
EEDIFEEETRE RS

1
yeF N {x} Yy yeFy yeF, Yy

so F, = F, \ {z}, and « is not a member of F,. Conversely, if z is not a member of F,, then

1 1 1 1 1
2 o= 2—+;:”’+;:q: 2
yeFru{z} Y yeF Yy yeFy Yy
so F, = F, u {z}, and = is a member of F,. O

Consider now an element x of S and a positive rational » < 1. Let n = |rz| and consider
the sets F,_j/z, K =0,...,n. Since 0 <r —n/x < 1/z, the set F,_,/, does not contain x, and
a repeated application of the lemma shows that the F,._(,_o)/, do not contain x, whereas the
F,_(n—2k—1)/z do. Consequently, x is a member of F, if and only if n is odd.

Finally, consider F/5. By the preceding, |2z/3] is odd for each z in Fys5, so 2z/3 is not
integral. Since Fy3 is finite, there exists a positive rational € such that |(2/3 — ¢)x| = |22/3]
for all x in Fy/3. This implies that Fy/3 is a subset of Fy/3_. which is impossible.

Comment. The solution above can be adapted to show that the problem statement still holds, if the
condition r < 1 in (2) is replaced with r < 0, for an arbitrary positive §. This yields that, if S does not
satisfy (1), then there exist infinitely many positive rational numbers r < 1 such that >, n1/z # r
for all finite subsets F' of S.

Solution 2. A finite S clearly satisfies (2), so let S be infinite. If S fails both conditions,
so does S\ {1}. We may and will therefore assume that S consists of integers greater than 1.
Label the elements of S increasingly z; < 9 < ---, where z; > 2.

We first show that S satisfies (2) if z,,,; > 2%, for all n. In this case, z,, > 2" 'z for
all n, so

If x4 > 3, or xy = 2 and x,,.1 > 2z, for some n, then erF 1/x < s < 1 for every finite subset
F of S, so S satisfies (2); and if 1 = 2 and x,, .1 = 2z, for all n, that is, z,, = 2" for all n, then
every finite subset I of S consists of powers of 2, s0 >, -1/ # 1/3 and again S satisfies (2).

Finally, we deal with the case where z,,1 < 2z, for some n. Consider the positive rational
r=1/x, —1/xy1 < 1/xpey. Ifr =3, - 1/z for no finite subset F' of S, then S satisfies (2).
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We now assume that r = >, . 1/z for some finite subset Fy of S, and show that S satisfies (1).
Since g 1/7 =7 < 1/,41, it follows that x,,, is not a member of F, so

1 1 1 1 1
Z ;ZZ;‘F =7r+ ::L‘_n'

Xz Xz
IGFOU{In+1} {L‘EFQ n+l n+l

Consequently, F' = Fy U {z,+1} and G = {z,} are distinct finite subsets of S such that
Dver 1/ =2 o1/, and S satisfies (1).
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Let ag, a1, as, ... be a sequence of real numbers such that ag = 0, a; = 1, and for every
n = 2 there exists 1 < k < n satisfying

Ap—1 + "+ Qp—j
2 .

Ay =

Find the maximal possible value of asgigs — a9917.
(Belgium,)

2016
20172 °

Answer: The maximal value is

Solution 1. The claimed maximal value is achieved at

Qop16 + -+ + Qg 1
a; =as =---=agpe = 1, a7 = 2017 21—m7
a :a2017+"'+a1:1_L
2018 2017 20172

Now we need to show that this value is optimal. For brevity, we use the notation
S(n,k) =an_1 + an_o+ -+ a,_ for nonnegative integers k < n.
In particular, S(n,0) = 0 and S(n,1) = a,_;. In these terms, for every integer n > 2 there
exists a positive integer k < n such that a,, = S(n, k)/k.

For every integer n > 1 we define

M, = max S, k), m, = min 5(n, k), and A, =M, —m, = 0.
I<ksn k 1<k<n

By definition, a,, € [my, M,] for all n > 2; on the other hand, a,_; = S(n,1)/1 € [m,, M,].
Therefore,
2018 — Az017 < Magig — Mao1s = Aaois,

and we are interested in an upper bound for Aggs.
Also by definition, for any 0 < k < n we have km,, < S(n,k) < kM,; notice that these
inequalities are also valid for k£ = 0.

Claim 1. For every n > 2, we have A,, < ”T’lAn_l.

Proof. Choose positive integers k,¢ < n such that M, = S(n,k)/k and m,, = S(n,()/l. We
have S(n, k) = a,—1 + S(n— 1,k —1), so

kE(M, —an—1) = S(n, k) — ka1 =Sn—1,k—1)—(k—1)ap_1 < (k—1)(My—1 — an—1),
since S(n — 1,k — 1) < (k — 1)M,,_;. Similarly, we get
Uap——my) =L —1Da,1—Sn—1,—1) < (l —1)(an-1—mMp_1).

Since m,,_1 < a,_1 < M,_1 and k, ¢ < n, the obtained inequalities yield

k—1 —1
Mn —Qp-1 < T(Mn—l - an—l) < i (Mn—l - an—l) and
n
(-1 n—1
Qp—1 — My < / (a'n—l - mn—l) < (an—l - mn—l)-
Therefore,
n—1 n—1
An - (Mn - an—l) + (a'n—l - mn) < ((Mn—l - a'n—l) + (an—l - mn—l)) = An—l I:‘
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Back to the problem, if a,, = 1 for all n < 2017, then asgis < 1 and hence asg15 — ag917 < 0.
Otherwise, let 2 < ¢ < 2017 be the minimal index with a, < 1. We have S(q,7) = i for all
i=1,2,...,q—1, while S(¢q,q) = ¢ — 1. Therefore, a, <1 yields a, = S(q,q)/q =1 — %.

Now we have S(qg+1,i) = i—é fori =1,2,...,¢,and S(g+1,q+1) = q—%. This gives us

Slg+1,1)  Slg+1l,q+1) ¢-1 Sla+lq) ¢ -1

M1 = = = and M, = = ,
q+1 1 q+ 1 q q+1 q (]2

so Agy1 = My1 — mgp1 = (g — 1)/¢*. Denoting N = 2017 > ¢ and using Claim 1 for
n=q+2,q+3,...,N+1 we finally obtain

-1 1 2 N 1 1 1 1 N-1
ANng .q+ .Q+ = 1—— ] < 1—— | = ’
¢ q+2 q+3 N+1 N+1 ¢ e

as required.

Comment 1. One may check that the maximal value of aggig — ago17 is attained at the unique
sequence, which is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of |ago1s — ag017|. In this
version, the answer ﬁ is achieved at

aso17 + -+ + ap 1

=1 —.
2018 2018

To prove that this value is optimal, it suffices to notice that Ay = % and to apply Claim 1 obtaining

a1 =ag =---=a17 =1, ais =

2017 1

12
_ < A < e — .. = .
|azo1s — azo17| < Azots < 5 5 e = 5073

Solution 2. We present a different proof of the estimate asg1g — @917 < 2200i We keep the

5.
same notations of S(n, k), m, and M, from the previous solution. :

Notice that S(n,n) = S(n,n — 1), as ap = 0. Also notice that for 0 < k < ¢ < n we have
S(n,l) = S(n,k)+ S(n—k, 0 —k).
Claim 2. For every positive integer n, we have m,, < m,,; and M, < M,, so the segment
[Mpi1, Myy1] is contained in [m,, M,].
Proof. Choose a positive integer k < n + 1 such that m, 1 = S(n + 1,k)/k. Then we have

kmyi =S+ 1,k)=a,+ Snk—1)=m, + (k—1)m, = km,,
which establishes the first inequality in the Claim. The proof of the second inequality is

similar. ]

Claim 3. For every positive integers k > n, we have m,, < a, < M,,.
Proof. By Claim 2, we have [my, My] < [my_1, M_1] S -+ S [my, M,]. Since ay € [my, My,
the claim follows. ]
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Claim 4. For every integer n > 2, we have M, = S(n,n —1)/(n — 1) and m,, = S(n,n)/n.
Proof. We use induction on n. The base case n = 2 is routine. To perform the induction step,
we need to prove the inequalities

S(n,n) - S(n, k) S(n, k) - S(n,n—1)
n ok ko~ n-—1

(1)

for every positive integer k& < n. Clearly, these inequalities hold for £k = n and £k = n — 1, as
S(n,n) = S(n,n—1) > 0. In the sequel, we assume that k£ <n — 1.

Now the first inequality in (1) rewrites as nS(n, k) = kS(n,n) = k(S(n, k)+S(n—k,n—k)),
or, cancelling the terms occurring on both parts, as

—k.n—=k
(n— B)S(n.k) > kS(n— kon— ) —= S(n.k) > k- 2" Z ).
n—
By the induction hypothesis, we have S(n — k,n — k)/(n — k) = m,,_. By Claim 3, we get
Gp_i = My foralli =1,2,... k. Summing these k inequalities we obtain
S(n k) > kg = k- 2R TR
n—=k

as required.
The second inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

(n—1)S(n, k) <kS(n,n—1) < (n—k—-1)S(n,k) <kS(n—k,n—k—1)
Sn—k,n—k—1)

S(n, k) <k-
< S(n,k) — 1

the last inequality follows again from Claim 3, as each term in S(n, k) is at most M,,_x. ]

Now we can prove the required estimate for asgis — agg17. Set N = 2017. By Claim 4,

SN+17N a +SN,N—1
aN+1_aN<MN+1—(IN=¥_a’N: N (N )—CLN
S(N,N—-1) N-1
= — -an.
N N N

On the other hand, the same Claim yields

oy =y = SN S(NN - 1)

N N

Noticing that each term in S(N, N —1) is at most 1, so S(N, N —1) < N — 1, we finally obtain

S(INN-1) N-1 S(N,N-1)

S(NN—-1) _N-1
N N N N? '

aNt+1 —aN <

Comment 1. Claim 1 in Solution 1 can be deduced from Claims 2 and 4 in Solution 2.
By Claim 4 we have M,, = S(n=1) and My, = S(:;’n) = 5= 14 follows that A, =M, —m, =

n—1 n .

S((g’fl;i) and so M,, = nA, and m, = (n — 1)A,

Similarly, M,,—1 = (n — 1)A,,—1 and m,,—1 = (n — 2)A,,—1. Then the inequalities m,_; < m,, and
M, < M,,_; from Claim 2 write as (n —2)A,,_1 < (n—1)A,, and nA,, < (n—1)A,_;. Hence we have
the double inequality

n—2 n—1

An—l < An < An—l'

n—1



Shortlisted problems — solutions 17

Comment 2. Both solutions above discuss the properties of an arbitrary sequence satisfying the
problem conditions. Instead, one may investigate only an optimal sequence which maximises the value
of agp1g — agp17. Here we present an observation which allows to simplify such investigation — for
instance, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequence (ay,) is uniquely determined by choosing, for every n > 2, a positive integer k(n) < n
such that a, = S(n,k(n))/k(n). Take an arbitrary 2 < no < 2018, and assume that all such inte-
gers k(n), for n # ng, are fixed. Then, for every n, the value of a,, is a linear function in a,, (whose
possible values constitute some discrete subset of [my,,, My,]| containing both endpoints). Hence,
a018 — a2017 is also a linear function in a,,, so it attains its maximal value at one of the endpoints of
the segment [my,,, My, |-

This shows that, while dealing with an optimal sequence, we may assume a,, € {m,, M,,} for all
2 < n < 2018. Now one can easily see that, if a,, = m,,, then m, 1 = m,, and M, ;1 < %QM”; similar
estimates hold in the case a, = M,. This already establishes Claim 1, and simplifies the inductive
proof of Claim 4, both applied to an optimal sequence.
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Determine all functions f : (0,00) — R satisfying

(a4 1) 1) = st + 7 (2) B

T

for all z,y > 0.
(South Korea)

C
Answer: f(z) = Cix + ~2 with arbitrary constants C7 and Cs.
x

Solution 1. Fix a real number @ > 1, and take a new variable t. For the values f(t), f(t?),
f(at) and f(a*t?), the relation (1) provides a system of linear equations:

v=y=t (t41) 000 = s+ s (2a)
c=tyma o (Be8) @ = g+ @) (2b)
r=a’t y=t: (a% + %) ft) = fl@**)+f (%) (2c)
T =y =at: (at + %) flat) = f(a®t?) + f(1) (2d)

In order to eliminate f(t?), take the difference of (2a) and (2b); from (2c) and (2d) eliminate
f(a*t?); then by taking a linear combination, eliminate f(at) as well:

(14 1) 70— (L4 2) sla = 10 = ) and

(w0 ) 10— (ar+ ) slan) = £e) - 1), 50

((at + %) <t + %) - (2 + %) <a2t+ %))f(t)
= (ar+ ) G = @) - (L4 2) e - ),

Notice that on the left-hand side, the coefficient of f(¢) is nonzero and does not depend on t:

1 1 toa\ ([, 1 1 ([, 1
at+— ) (t+=-)—(-+-)(d*t+—=)=a+-—(d®+ =) <.
at t a t a?t a ad

After dividing by this fixed number, we get

f() = Cut + 2 ®)

where the numbers C; and Cy are expressed in terms of a, f(1), f(a®) and f(1/a?), and they
do not depend on t.

The functions of the form (3) satisfy the equation:

<x+ i) fly) = (er %) (Cly+ %) = (Clnyr f—;) + (Clg +02§) = f(xy)—kf(%).
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Solution 2. We start with an observation. If we substitute z = a # 1 and y = a" in (1), we
obtain

) = (s 1) 1)+ s <o

For the sequence z, = a”, this is a homogeneous linear recurrence of the second order, and its
characteristic polynomial is t — (a + 1)t + 1 = (¢t — a)(t — 1) with two distinct nonzero roots,
namely a and 1/a. As is well-known, the general solution is z, = Cyja™ + Cy(1/a)™ where the
index n can be as well positive as negative. Of course, the numbers C; and C; may depend of
the choice of a, so in fact we have two functions, C; and C5, such that

CQ(CL)

an

f(a") =Ci(a) - a" + for every a # 1 and every integer n. (4)
The relation (4) can be easily extended to rational values of n, so we may conjecture that C4
and Cy are constants, and whence f(t) = Cit + % As it was seen in the previous solution,
such functions indeed satisfy (1).

The equation (1) is linear in f; so if some functions f; and fy satisfy (1) and ¢y, co are real
numbers, then ¢; fi(x) + 2 fo(x) is also a solution of (1). In order to make our formulas simpler,
define

fo(z) = f(z) — f(1) - .

This function is another one satisfying (1) and the extra constraint fo(1) = 0. Repeating the

. . L . .
same argument on linear recurrences, we can write fy(a) = K(a)a™ + 22 with some functions

an

K and L. By substituting n = 0, we can see that K(a) + L(a) = fy(1) = 0 for every a. Hence,

fola") = K(a) (a” - i) |

an

Now take two numbers a > b > 1 arbitrarily and substitute x = (a/b)" and y = (ab)" in (1):
a" b n 2n 2n
w i fo((ab)") = fo(a™) + fo(b*"), so

(b—: + %)K(ab) <(ab)" - (az)n) = K(a) <a2" - %) + K(b) (b% - bzin) or equivalently
K(ab) <a2" - a—in +b*" — b?in) = K(a) <a2" - ﬁ) + K(b) (b% — b?in) (5)

By dividing (5) by a** and then taking limit with n — +o0 we get K(ab) = K(a). Then (5)
reduces to K (a) = K(b). Hence, K(a) = K(b) for all a > b > 1.

Fix a > 1. For every x > 0 there is some b and an integer n such that 1 < b < a and x = b™.
Then ) .
fo(z) = fo(b") = K(b) (b" — b_") = K(a) <az — —> )

Xz

Hence, we have f(z) = fo(z) + f(1)z = Ciz + £ with C; = K(a) + f(1) and Cy = —K (a).

Comment. After establishing (5), there are several variants of finishing the solution. For example,
instead of taking a limit, we can obtain a system of linear equations for K(a), K(b) and K (ab) by
substituting two positive integers n in (5), say n = 1 and n = 2. This approach leads to a similar
ending as in the first solution.

Optionally, we define another function fi(z) = fo(z) — C (z — 1) and prescribe K(c) = 0 for
another fixed ¢. Then we can choose ab = ¢ and decrease the number of terms in (5).
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Let m,n > 2 be integers. Let f(z1,...,z,) be a polynomial with real coefficients such

that T + +x
flxy, ... x,) = {¥J for every xq,...,1, € {0, 1,...,m— 1}.
m
Prove that the total degree of f is at least n.
(Brazil)
Solution. We transform the problem to a single variable question by the following
Lemma. Let ay,...,a, be nonnegative integers and let G(z) be a nonzero polynomial with

deg G < ay + ...+ a,. Suppose that some polynomial F(xy,...,x,) satisfies
F(zy,...,2) =G(x1 + ...+ x,) for (z1,...,2,)€{0,1,...,; a1} x ... x{0,1,... a,}.

Then F' cannot be the zero polynomial, and deg F' > deg G.

For proving the lemma, we will use forward differences of polynomials. If p(x) is a polyno-
mial with a single variable, then define (Ap)(x) = p(x + 1) — p(x). It is well-known that if p is
a nonconstant polynomial then deg Ap = degp — 1.

If p(x1,...,2,) is a polynomial with n variables and 1 < k < n then let

(Akp)<'r17 s wrn) = p<$17 sy Tp—1, T + 17 Tht1, - - - wxn) - p<$17 s wrn)-
It is also well-known that either Agp is the zero polynomial or deg(Agp) < degp — 1.

Proof of the lemma. We apply induction on the degree of G. If G is a constant polynomial
then we have F(0,...,0) = G(0) # 0, so F' cannot be the zero polynomial.
Suppose that deg G > 1 and the lemma holds true for lower degrees. Since a; + ...+ a, =

deg G > 0, at least one of ay,...,a, is positive; without loss of generality suppose a; > 1.
Consider the polynomials F; = A F and G; = AG. On the grid {0, ...,a;—1}x{0,..., as}x
.xA{0,...,a,} we have

Fi(zy,...;zn) = F(xy+ 1,29, ..., 2p) — Fxy, 20, ..., 2) =
=G +... 42, +1) =G+ ... +x,) =Gz + ... + ).

Since G is nonconstant, we have deg G; = degG—1 < (a; — 1) +as+. ..+ a,. Therefore we can
apply the induction hypothesis to F} and G and conclude that F} is not the zero polynomial
and deg F| > degG;. Hence, deg F' > deg F} + 1 = degG; + 1 = deg . That finishes the
proof. ]

To prove the problem statement, take the unique polynomial g(x) so that g(z) = [%J for
ze€{0,1,...,n(m—1)} and degg < n(m — 1). Notice that precisely n(m — 1) + 1 values
of g are prescribed, so g(z) indeed exists and is unique. Notice further that the constraints
g(0) = g(1) = 0 and g(m) = 1 together enforce deg g > 2.

By applying the lemma to a; = ... = a,, = m — 1 and the polynomials f and g, we achieve
deg f > deg g. Hence we just need a suitable lower bound on deg g.

Consider the polynomial h(z) = g(x + m) — g(z) — 1. The degree of g(x + m) — g(z) is
degg—1>1,s0degh =degg—1 > 1, and therefore h cannot be the zero polynomial. On the
other hand, h vanishes at the points 0,1,...,n(m — 1) —m, so h has at least (n — 1)(m — 1)
roots. Hence,

degf>degg=degh+1=(n—-1)(m—1)+1=n.



Shortlisted problems — solutions 21

Comment 1. In the lemma we have equality for the choice F(x1,...,2,) = G(x1 + ... + x,), S0 it
indeed transforms the problem to an equivalent single-variable question.

Comment 2. If m > 3, the polynomial h(x) can be replaced by Ag. Notice that

1 ifz=-1 (modm)

) forz=0,1,...,n(m—1) — 1.
0 otherwise

(Ag)(x) = {

Hence, Ag vanishes at all integers x with 0 < z < n(m — 1) and x # —1 (mod m). This leads to
2
degg > w + 1.

If m is even then this lower bound can be improved to n(m —1). For 0 < N < n(m — 1), the
(N + 1)% forward difference at z = 0 is

N
AV Y0) = S (=N (V) (ag) (k) = (N, #
@90 = S0 () som = 3 oY) 0

0<k<N
k=—1 (mod m)

Since m is even, all signs in the last sum are equal; with N = n(m— 1) —1 this proves A"~ g(0) # 0,
indicating that degg = n(m — 1).

However, there are infinitely many cases when all terms in (%) cancel out, for example if m is an
odd divisor of n + 1. In such cases, deg f can be less than n(m — 1).

Comment 3. The lemma is closely related to the so-called

Alon—Fiiredi bound. Let Si,...,S, be nonempty finite sets in a field and suppose that
the polynomial P(x1,...,x,) vanishes at the points of the grid Sy x ... x S, except for a

n
single point. Then deg P > > (|S;] —1).
i=1
(A well-known application of the Alon-Fiiredi bound was the former IMO problem 2007 /6.
Since then, this result became popular among the students and is part of the IMO training
for many IMO teams.)

The proof of the lemma, can be replaced by an application of the Alon—Fiiredi bound as follows. Let
d = deg G, and let Gy be the unique polynomial such that Go(z) = G(z) for x € {0,1,...,d — 1} but
deg Gg < d. The polynomials Gy and G are different because they have different degrees, and they
attain the same values at 0,1,...,d — 1; that enforces Gy(d) # G(d).

Choose some nonnegative integers by,...,b, so that by < a1, ..., by < ayn, and by + ... + b, = d,
and consider the polynomial

H(zy,...,2p) = F(x1,...,24) — Go(z1 + ... + )

on the grid {0,1,...,b1} x ... x {0,1,...,b,}.

At the point (b1, ...,b,) we have H(by,...,b,) = G(d) — Go(d) # 0. At all other points of the grid
we have F' = G and therefore H = G—Gy = 0. So, by the Alon—Fiiredi bound, deg H > b1 +...+b, = d.
Since deg Gy < d, this implies deg F' = deg(H + Go) = deg H > d = degG. O
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- Find the maximal value of

b c 3/ d
sta 3 3
\Vor7 Nesr " Vas7 " Vax7

where a, b, ¢, d are nonnegative real numbers which satisfy a + b + ¢ + d = 100.

(Taiwan)

8
Answer: %, reached when (a, b, ¢,d) is a cyclic permutation of (1,49, 1,49).
Solution 1. Since the value 8/5’/7 is reached, it suffices to prove that S < 8/\3/7

Assume that z,y, z,t is a permutation of the variables, with < y < z < t. Then, by the
rearrangement inequality,

(\/tJr \/:1:+ ) <\/z+7 \/y+7)
Claim. The first bracket above does not exceed 43/ L;M

Proof. Since

X3+Y3+3XYZ—Z3=%(X+Y—Z)((X—Y)2+(X+Z)2+(Y+Z)2),

the inequality X + Y < Z is equivalent (when XY, Z > 0) to X® + Y3 + 3XYZ < Z3.
Therefore, the claim is equivalent to

x t {,/xt(x+t+14)<x+t+14

P17 z47 T+ 7)E+7) 7

Notice that

3<,/xt(:p+t+14)_3<,/t(x+7).x(t+7).7(x+t+14)
Tx+7)t+7) “\N7t+7) 7@+7) (t+7)(x+7)
tx+7) xt+7) T(x+t+14)
ST et T Grn@rn)

by the AM-GM inequality, so it suffices to prove

T t +t(x+7)+x(t+7)+7(x+t+14)<x+t+14
t+7 x+T7 Tt+7) T(@+T7) (t+T(x+T) 7

A straightforward check verifies that the last inequality is in fact an equality. ]

The claim leads now to

g < 3/x+t+14+</y+z+14<2§,/x+y+z+t+28_i
- 7 7 h 14 I

the last inequality being due to the AM-CM inequality (or to the fact that Y/ is concave on

[0,00)).
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Solution 2. We present a different proof for the estimate S < 8/\3ﬁ
Start by using Holder’s inequality:

(Z i ) <Y Y X () - (Zf) e

cyc cyc cyc cyc

Notice that

(x —1)*(x —7)* 448
o >0<:>x2—16x+71>x2+7
yields
ZLgiZ(b—m\/Bwl)=i(384—162\/13>:w_
Finally,
g _ 1 2 Z\/—+Z\/—+(48—22\/_) 512
< 55 (D) (ss-23va) < 5 3 !

by the AM—GM inequality. The conclusion follows.

Comment. All the above works if we replace 7 and 100 with k > 0 and 2(k? + 1), respectively; in this
case, the answer becomes
3/ (k+1)2

—
Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being
replaced with arbitrary positive real numbers p and ¢ satisfying ¢ > 4p.

2
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Combinatorics

Let n > 3 be an integer. Prove that there exists a set S of 2n positive integers
satisfying the following property: For every m = 2,3,... n the set S can be partitioned into

two subsets with equal sums of elements, with one of subsets of cardinality m.
(Iceland)

Solution. We show that one of possible examples is the set

S ={1 3, 2.3k:k=1,2,...,n—1}u{1’ %_1}.

It is readily verified that all the numbers listed above are distinct (notice that the last two are
not divisible by 3).
The sum of elements in S is

3" +9 o 3" +9 & 3" +9 39
¥=1 1)+ ) (134238 = >3 = =2-3"
+< 5 )+k_1( + ) 5 +k:1 5 T

Hence, in order to show that this set satisfies the problem requirements, it suffices to present,
for every m = 2,3,...,n, an m-element subset A,, < S whose sum of elements equals 3".
Such a subset is

Am={2.3k; kzn—m—l—1,n—m+2,...,n_1}U{1_3n—m+1}.
Clearly, |A,,| = m. The sum of elements in A,, is

n—1 _
2.3n_9.3n m+1
D o2e3k =3y = 3",

3n—m+1 +
2

k=n—m+1

as required.

Comment. Let us present a more general construction. Let s1, s9,...,S2,—1 be a sequence of pairwise
distinct positive integers satisfying so;411 = S9; + s9;_1 for all i = 2,3,...,n— 1. Set s9, = 81 + 52 +
coo o+ Sop_d.

Assume that s, is distinct from the other terms of the sequence. Then the set S = {s1, s2,..., Son}
satisfies the problem requirements. Indeed, the sum of its elements is

2n—4
2= Z Si + (S2n—3 + S2n—2) + S2p—1 + S2p = Son + S2p—1 + S2p—1 + S2p = 282, + 28201
i=1

Therefore, we have

5= Son + Son—1 = Sop + Sapn—2 + S2p—3 = S2p + Sop—2 + Sop—4 + S2p—5 = ...,

which shows that the required sets A,, can be chosen as

Am = {52na S2n—25 -+ S2n—2m+4, S2n72m+3}-
So, the only condition to be satisfied is sa, ¢ {s1,S2,...,S2,—1}, which can be achieved in many
different ways (e.g., by choosing properly the number s; after specifying so, s3, ..., Sop_1).

The solution above is an instance of this general construction. Another instance, for n > 3, is the
set
{F, oy Fop, P+ o0 + Fopaf,

where F} =1, Fb =2, F,,.1 = F,, + F,_ is the usual Fibonacci sequence.
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Queenie and Horst play a game on a 20 x 20 chessboard. In the beginning the board
is empty. In every turn, Horst places a black knight on an empty square in such a way that his
new knight does not attack any previous knights. Then QQueenie places a white queen on an
empty square. The game gets finished when somebody cannot move.
Find the maximal positive K such that, regardless of the strategy of Queenie, Horst can
put at least K knights on the board.
(Armenia)

Answer: K = 20%/4 = 100. In case of a 4N x 4M board, the answer is K = 4N M.

Solution. We show two strategies, one for Horst to place at least 100 knights, and another
strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on black squares, until all black squares get
occupied.

Colour the squares of the board black and white in the usual way, such that the white
and black squares alternate, and let Horst put his knights on black squares as long as it is
possible. Two knights on squares of the same colour never attack each other. The number of
black squares is 202/2 = 200. The two players occupy the squares in turn, so Horst will surely
find empty black squares in his first 100 steps.

A strategy for Queenie: Group the squares into cycles of length 4, and after each step
of Horst, occupy the opposite square in the same cycle.

Consider the squares of the board as vertices of a graph; let two squares be connected if
two knights on those squares would attack each other. Notice that in a 4 x 4 board the squares
can be grouped into 4 cycles of length 4, as shown in Figure 1. Divide the board into parts of
size 4 x 4, and perform the same grouping in every part; this way we arrange the 400 squares
of the board into 100 cycles (Figure 2).

AT R s L
PZa% i ANy ¢ v é e 2
RS R °
A AR T 5
Figure 1 Fig-L;re 2 Figure 3

The strategy of Queenie can be as follows: Whenever Horst puts a new knight to a certain
square A, which is part of some cycle A — B — C — D — A, let Queenie put her queen on the
opposite square C' in that cycle (Figure 3). From this point, Horst cannot put any knight on
A or C because those squares are already occupied, neither on B or D because those squares
are attacked by the knight standing on A. Hence, Horst can put at most one knight on each
cycle, that is at most 100 knights in total.

Comment 1. Queenie’s strategy can be prescribed by a simple rule: divide the board into 4 x 4
parts; whenever Horst puts a knight in a part P, Queenie reflects that square about the centre of P
and puts her queen on the reflected square.

Comment 2. The result remains the same if Queenie moves first. In the first turn, she may put
her first queen arbitrarily. Later, if she has to put her next queen on a square that already contains a
queen, she may move arbitrarily again.
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Let n be a given positive integer. Sisyphus performs a sequence of turns on a board
consisting of n + 1 squares in a row, numbered 0 to n from left to right. Initially, n stones
are put into square 0, and the other squares are empty. At every turn, Sisyphus chooses any
nonempty square, say with & stones, takes one of those stones and moves it to the right by at
most k squares (the stone should stay within the board). Sisyphus’ aim is to move all n stones
to square n.

Prove that Sisyphus cannot reach the aim in less than

IR FIE
1 2 3 n
turns. (As usual, [x| stands for the least integer not smaller than x.)
(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same final
position. So, at any turn we can prescribe which stone from the chosen square to move. We
do it in the following manner. Number the stones from 1 to n. At any turn, after choosing a
square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square contains not more than k
stones (since all their numbers are at most k). Therefore, stone k is moved by at most k squares
at each turn. Since the total shift of the stone is exactly n, at least [n/k] moves of stone k
should have been made, for every k =1,2,...,n.

By summing up over all £ = 1,2,...,n, we get the required estimate.

Comment. The original submission contained the second part, asking for which values of n the equality
can be achieved. The answer is n = 1,2,3,4,5,7. The Problem Selection Committee considered this
part to be less suitable for the competition, due to technicalities.
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An anti-Pascal pyramid is a finite set of numbers, placed in a triangle-shaped array
so that the first row of the array contains one number, the second row contains two numbers,
the third row contains three numbers and so on; and, except for the numbers in the bottom
row, each number equals the absolute value of the difference of the two numbers below it. For
instance, the triangle below is an anti-Pascal pyramid with four rows, in which every integer
from 1 to 1+ 2+ 3+ 4 = 10 occurs exactly once:

8§ 3 10 9.

Is it possible to form an anti-Pascal pyramid with 2018 rows, using every integer from 1 to
1+ 24 .-+ 2018 exactly once?
(Iran)

Answer: No, it is not possible.

Solution. Let T" be an anti-Pascal pyramid with n rows, containing every integer from 1 to
14+2+---+n, and let a; be the topmost number in T" (Figure 1). The two numbers below a; are
some as and by = aq + as, the two numbers below by are some a3 and by = a; + as + a3, and so
on and so forth all the way down to the bottom row, where some a,, and b, = a; +as+---+a,
are the two neighbours below b,,_1 = ay + as + - - + a,_1. Since the a; are n pairwise distinct
positive integers whose sum does not exceed the largest number in 7', which is 1 +2+--- 4+ n,
it follows that they form a permutation of 1,2,... n.

Figure 1 Figure 2

Consider now (Figure 2) the two ‘equilateral’ subtriangles of 7" whose bottom rows contain
the numbers to the left, respectively right, of the pair a,, b,. (One of these subtriangles may
very well be empty.) At least one of these subtriangles, say 7", has side length ¢ > [(n — 2)/2].

Since 7" obeys the anti-Pascal rule, it contains ¢ pairwise distinct positive integers a}, ab, . .., aj,
where @/ is at the apex, and aj and bj, = a} + a5+ - - - + a;, are the two neighbours below bj_, for
each £ = 2,3...,/. Since the a; all lie outside 7", and they form a permutation of 1,2,...,n,

the a), are all greater than n. Consequently,

(2n+0+1
522(”+1)+(n+2)+---+(n+g):%
1 n—-2 - Sn(n — 2)

= = ° 2 PR 1 —
27 2 ( * +) R

which is greater than 1 + 2+ --- +n =n(n + 1)/2 for n = 2018. A contradiction.

Comment. The above estimate may be slightly improved by noticing that b, # b,. This implies
nn+1)/2=>0b, >t =>[n—-2)/2]2n+[(n—2)/2] +1)/2,s0 n < Tif nis odd, and n < 12 if n is
even. It seems that the largest anti-Pascal pyramid whose entries are a permutation of the integers
from1to1+2+---+n has 5 rows.



28 Cluj-Napoca — Romania, 3—14 July 2018

Let k£ be a positive integer. The organising committee of a tennis tournament is to
schedule the matches for 2k players so that every two players play once, each day exactly one
match is played, and each player arrives to the tournament site the day of his first match, and
departs the day of his last match. For every day a player is present on the tournament, the
committee has to pay 1 coin to the hotel. The organisers want to design the schedule so as to

minimise the total cost of all players’ stays. Determine this minimum cost.
(Russia)

Answer: The required minimum is k(4k* + k —1)/2.

Solution 1. Enumerate the days of the tournament 1,2, ..., (QZk). Let by < by < -+ < by be
the days the players arrive to the tournament, arranged in nondecreasing order; similarly, let
ey = -+ = ey, be the days they depart arranged in nonincreasing order (it may happen that a
player arrives on day b; and departs on day e;, where i # j). If a player arrives on day b and
departs on day e, then his stay cost is e — b + 1. Therefore, the total stay cost is

2k

Y= Zel Zb+n—2 i —bi+1).

i=1

Bounding the total cost from below. To' this end, estimate e; ;1 — b;11 + 1. Before day bii1,
only ¢ players were present, so at most (;) matches could be played. Therefore, b; ;1 < (;) + 1.

Similarly, at most (;) matches could be played after day e; 1, so e; > (22k) — (;) Thus,

2k )
€i+1_bi+1+1> <2) —2(;) Zk(Qk—l)—’l(Z—l)

This lower bound can be improved for ¢ > k: List the i players who arrived first, and
the ¢ players who departed last; at least 2i — 2k players appear in both lists. The matches
between these players were counted twice, though the players in each pair have played only
once. Therefore, if i > k, then

2k 1 21 — 2k ,
€Z+1_bz+1+1>(2)_2<2)+( 9 ):(2]{?—2)2

An optimal tournament, We now describe a schedule in which the lower bounds above are all
achieved simultaneously. Split players into two groups X and Y, each of cardinality k. Next,
partition the schedule into three parts. During the first part, the players from X arrive one by
one, and each newly arrived player immediately plays with everyone already present. During
the third part (after all players from X have already departed) the players from Y depart one
by one, each playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y. Let Sy, Ss, ..., Sk
be the players in X, and let T3, T5, ..., T} be the players in Y. Let T}, T5, ..., T} arrive in
this order; after 7} arrives, he immediately plays with all the S;, i > j. Afterwards, players Sk,
Sk-1, - .., S1 depart in this order; each S; plays with all the T}, i < j, just before his departure,
and S, departs the day T}, arrives. For 0 < s < k — 1, the number of matches played between
T)._s’s arrival and S;_,’s departure is

1 1
Z —j +1+Z k—j+1)=-s(s+1)+1+-s(s+3)=(s+1)>2
j=k— j=k—s 2 2

Thus, if 7 > k, then the number of matches that have been played between T;_j_1’s arrival,
which is b; 1, and S;_1’s departure, which is e; 1, is (2k—1)?; that is, ;41 —b; 1 +1 = (2k—1)?,
showing the second lower bound achieved for all ¢ > k.
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If + < k, then the matches between the ¢ players present before b;,; all fall in the first part
of the schedule, so there are (;) such, and b;;, = (;) + 1. Similarly, after e;,q, there are i
players left, all (;) matches now fall in the third part of the schedule, and ¢;,; = (22k) — (;)
The first lower bound is therefore also achieved for all i < k.

Consequently, all lower bounds are achieved simultaneously, and the schedule is indeed
optimal.

FEvaluation. Finally, evaluate the total cost for the optimal schedule:

k 2%k—1 k—1
5= (k@k—1) =i - 1)+ > (2k—i)* = (k+ Dk2k—1) = > i(i—1) + Y 5
i=0 i=k+1 i=0 j=1
1 1
= k:(k;+1)(2k;—1)—k:2+§k(k+1) = 5k(4k2+k—1).
Solution 2. Consider any tournament schedule. Label players P, P, ..., P in order of
their arrival, and label them again Qor, Qor_1, ..., @1 in order of their departure, to define a
permutation as, ag, ..., ag; of 1,2, ..., 2k by P, = Q,,.
We first describe an optimal tournament for any given permutation aq, as, ..., ag of the
indices 1, 2, ..., 2k. Next, we find an optimal permutation and an optimal tournament.

Optimisation for a fized a,, ..., as,. We say that the cost of the match between P, and P;
is the number of players present at the tournament when this match is played. Clearly, the
Committee pays for each day the cost of the match of that day. Hence, we are to minimise the
total cost of all matches.

Notice that ()o1’s departure does not precede P.’s arrival. Hence, the number of play-
ers at the tournament monotonically increases (non-strictly) until it reaches 2k, and then
monotonically decreases (non-strictly). So, the best time to schedule the match between P,
and P; is either when P, ) arrives, or when Qmax(ai,a].) departs, in which case the cost is
min (max(, j), max(a;, a;)).

Conversely, assuming that ¢ > 7, if this match is scheduled between the arrivals of P; and
P4, then its cost will be exactly i = max(7, j). Similarly, one can make it cost max(a;, a;).
Obviously, these conditions can all be simultaneously satisfied, so the minimal cost for a fixed
sequence ap, do, ..., Ao iS

Y(ag, ..., a) = Z min (max(i, j), max(a;, a;)). (1)

1<i<j<2k

Optimising the sequence (a;). Optimisation hinges on the lemma below.
Lemma. If a < b and ¢ < d, then

min (max(a, x), max(c, y)) + min (max(b, x), max(d, y))

> min(max(a, z), max(d, y)) + min(max(b, ), max(c, y)).

Proof. Write ¢/ = max(a,z) < max(b,x) = 0 and ¢ = max(c,y) < max(d,y) = d’' and check
that min(a’, ¢’) + min(¥', d") = min(d’, d') + min(¥', ¢). O

Consider a permutation ai, ag, ..., ag such that a; < a; for some ¢ < j. Swapping q;
and a; does not change the (7,j)th summand in (1), and for ¢ ¢ {7, j} the sum of the (7, ¢)th
and the (j, /)th summands does not increase by the Lemma. Hence the optimal value does not
increase, but the number of disorders in the permutation increases. This process stops when
a; = 2k + 1 — 1 for all 7, so the required minimum is

S(2k,2k—1,...,1)= | min(max(i, ), max(2k + 1 —i,2k + 1 — j))

1<i<j<2k

= ) min(j,2k+1—i).

1<i<j<2k
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The latter sum is fairly tractable and yields the stated result; we omit the details.

Comment. If the number of players is odd, say, 2k — 1, the required minimum is k(k — 1)(4k —1)/2.
In this case, |X| = k, |Y| = k — 1, the argument goes along the same lines, but some additional
technicalities are to be taken care of.
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- Let a and b be distinct positive integers. The following infinite process takes place on
an initially empty board.

(7) If there is at least a pair of equal numbers on the board, we choose such a pair and
increase one of its components by a and the other by b.

(27) If no such pair exists, we write down two times the number 0.

Prove that, no matter how we make the choices in (i), operation (iz) will be performed only

finitely many times.
(Serbia)

Solution 1. We may assume gcd(a, b) = 1; otherwise we work in the same way with multiples
of d = ged(a, b).

Suppose that after N moves of type (i7) and some moves of type (i) we have to add two
new zeros. For each integer k, denote by f(k) the number of times that the number k appeared
on the board up to this moment. Then f(0) = 2N and f(k) = 0 for k¥ < 0. Since the board
contains at most one k — a, every second occurrence of k — a on the board produced, at some
moment, an occurrence of k; the same stands for £ — b. Therefore,

o - | 20| 1| 0

yielding
f(k—a)+ f(k—b)
£) = -

Since ged(a, b) = 1, every integer x > ab — a — b is expressible in the form = = sa + tb, with
integer s,t > 0.

We will prove by induction on s + ¢ that if z = sa + bt, with s, ¢ nonnegative integers, then

jw) =L s ®)

~1. (2)

The base case s+t = 0 is trivial. Assume now that (3) is true for s+¢ = v. Then, if s+¢ =v+1
and = = sa + tb, at least one of the numbers s and ¢ — say s — is positive, hence by (2),

f(x) = f(sa+th) = f((8—12)a+tb) —1>%( /10) —2) -1= ‘;522 — 2.

Assume now that we must perform moves of type (ii) ad infinitum. Take n = ab—a— b and
suppose b > a. Since each of the numbers n + 1,7+ 2,...,n + b can be expressed in the form
sa + th, with 0 < s < b and 0 < t < a, after moves of type (ii) have been performed 2070+1
times and we have to add a new pair of zeros, each f(n + k), k =1,2,...,b, is at least 2. In
this case (1) yields inductively f(n + k) > 2 for all £ > 1. But this is absurd: after a finite
number of moves, f cannot attain nonzero values at infinitely many points.

Solution 2. We start by showing that the result of the process in the problem does not
depend on the way the operations are performed. For that purpose, it is convenient to modify
the process a bit.

Claim 1. Suppose that the board initially contains a finite number of nonnegative integers,
and one starts performing type () moves only. Assume that one had applied k£ moves which led
to a final arrangement where no more type (i) moves are possible. Then, if one starts from the
same initial arrangement, performing type (i) moves in an arbitrary fashion, then the process
will necessarily stop at the same final arrangement
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Proof. Throughout this proof, all moves are supposed to be of type (7).

Induct on k; the base case k = 0 is trivial, since no moves are possible. Assume now that
k = 1. Fix some canonical process, consisting of k moves M, M, ..., My, and reaching the
final arrangement A. Consider any sample process mq,ms, ... starting with the same initial
arrangement and proceeding as long as possible; clearly, it contains at least one move. We need
to show that this process stops at A.

Let move m; consist in replacing two copies of x with x + @ and x + b. If move M; does
the same, we may apply the induction hypothesis to the arrangement appearing after m;.
Otherwise, the canonical process should still contain at least one move consisting in replacing
(x,z) — (x + a,z + b), because the initial arrangement contains at least two copies of x, while
the final one contains at most one such.

Let M; be the first such move. Since the copies of = are indistinguishable and no other copy
of x disappeared before M, in the canonical process, the moves in this process can be permuted
as My, My, ..., M; 1, M;,1,..., My, without affecting the final arrangement. Now it suffices to
perform the move m; = M; and apply the induction hypothesis as above. O

Claim 2. Consider any process starting from the empty board, which involved exactly n moves
of type (i7) and led to a final arrangement where all the numbers are distinct. Assume that
one starts with the board containing 2n zeroes (as if n moves of type (ii) were made in the
beginning), applying type (i) moves in an arbitrary way. Then this process will reach the same
final arrangement.

Proof. Starting with the board with 2n zeros, one may indeed model the first process mentioned
in the statement of the claim, omitting the type (i) moves. This way, one reaches the same
final arrangement. Now, Claim 1 yields that this final arrangement will be obtained when
type (i) moves are applied arbitrarily. ]

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer
n such that, starting from 2n zeroes, one may apply type (i) moves indefinitely.

In order to prove this, we start with an obvious induction on s + ¢ = k£ > 1 to show that if
we start with 257 zeros, then we can get simultaneously on the board, at some point, each of
the numbers sa + tb, with s + ¢ = k.

Suppose now that a < b. Then, an appropriate use of separate groups of zeros allows us to
get two copies of each of the numbers sa + tb, with 1 < s,¢ < b.

Define N = ab—a—b, and notice that after representing each of numbers N+k, 1 < k < b, in
the form sa+tb, 1 < s,t < b we can get, using enough zeros, the numbers N+1, N+2,..., N+a
and the numbers N +1, N +2,..., N + b.

From now on we can perform only moves of type (7). Indeed, if n = N, the occurrence of the
numbers n+1,n+2,...,n+aand n+1,n+2,... , n+0b and the replacement (n+1,n+1) —
(n+b+ 1,n+a+ 1) leads to the occurrence of the numbers n +2,n+3,...,n+a+ 1 and
n+2n+3,....n+b+ 1.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fact the number
of moves in the canonical process is the same as in an arbitrary sample one.



34 Cluj-Napoca — Romania, 3—14 July 2018

- Consider 2018 pairwise crossing circles no three of which are concurrent. These circles
subdivide the plane into regions bounded by circular edges that meet at vertices. Notice that
there are an even number of vertices on each circle. Given the circle, alternately colour the
vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice —
once for each of the two circles that cross at that point. If the two colourings agree at a vertex,
then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains
at least 2061 yellow points, then the vertices of some region are all yellow.

(India)

Solution 1. Letting n = 2018, we will show that, if every region has at least one non-yellow
vertex, then every circle contains at most n + |v/n — 2| — 2 yellow points. In the case at hand,
the latter equals 2018 + 44 — 2 = 2060, contradicting the hypothesis.

Consider the natural geometric graph G associated with the configuration of n circles. Fix
any circle C' in the configuration, let k£ be the number of yellow points on C', and find a suitable
lower bound for the total number of yellow vertices of GG in terms of k£ and n. It turns out that
k is even, and G has at least

eea("2) w2 (" TR < B hs - - )

yellow vertices. The proof hinges on the two lemmata below.

Lemma 1. Let two circles in the configuration cross at z and y. Then x and y are either both
yellow or both non-yellow.

Proof. This is because the numbers of interior vertices on the four arcs x and y determine on
the two circles have like parities. O

In particular, each circle in the configuration contains an even number of yellow vertices.

Lemma 2. 1f Ty, 52, and Zz are circular arcs of three pairwise distinct circles in the configu-
ration, then the number of yellow vertices in the set {z,y, z} is odd.

Proof. Let C4, Cy, C3 be the three circles under consideration. Assume, without loss of gen-
erality, that Cy and Cj cross at x, C5 and C] cross at y, and Cy and C5 cross at z. Let ki,
ko, ks be the numbers of interior vertices on the three circular arcs under consideration. Since
each circle in the configuration, different from the C}, crosses the cycle 7y U yz U Zz at an even
number of points (recall that no three circles are concurrent), and self-crossings are counted
twice, the sum ki + ko + k3 is even.

Let Z; be the colour z gets from C and define the other colours similarly. By the preceding,
the number of bichromatic pairs in the list (77, Y1), (Xa, Z2), (Y3, X3) is odd. Since the total
number of colour changes in a cycle Z1-Y;,-Y3-X3-Xo-Z5-7; is even, the number of bichromatic
pairs in the list (X5, X3), (Y1,Y3), (Z1, Z2) is odd, and the lemma follows. ]

We are now in a position to prove that () bounds the total number of yellow vertices from
below. Refer to Lemma 1 to infer that the k yellow vertices on C pair off to form the pairs of
points where C'is crossed by k/2 circles in the configuration. By Lemma 2, these circles cross
pairwise to account for another 2(%2) yellow vertices. Finally, the remaining n — k/2 — 1 circles
in the configuration cross C at non-yellow vertices, by Lemma 1, and Lemma 2 applies again
to show that these circles cross pairwise to account for yet another 2(”4“2/2*1) yellow vertices.
Consequently, there are at least (*) yellow vertices.

Next, notice that G is a plane graph on n(n — 1) degree 4 vertices, having exactly 2n(n —1)
edges and exactly n(n — 1) + 2 faces (regions), the outer face inclusive (by Euler’s formula for
planar graphs).

Lemma 3. Each face of G has equally many red and blue vertices. In particular, each face has
an even number of non-yellow vertices.
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Proof. Trace the boundary of a face once in circular order, and consider the colours each vertex
is assigned in the colouring of the two circles that cross at that vertex, to infer that colours of
non-yellow vertices alternate. L]

Consequently, if each region has at least one non-yellow vertex, then it has at least two such.
Since each vertex of G has degree 4, consideration of vertex-face incidences shows that G has
at least n(n—1)/2+ 1 non-yellow vertices, and hence at most n(n—1)/2—1 yellow vertices. (In
fact, Lemma 3 shows that there are at least n(n — 1)/4 + 1/2 red, respectively blue, vertices.)

Finally, recall the lower bound (x) for the total number of yellow vertices in G, to write
nn—1)/2—1=>k*/2—(n—2)k+ (n—2)(n—1), and conclude that k < n + [v/n — 2] — 2, as
claimed in the first paragraph.

Solution 2. The first two lemmata in Solution 1 show that the circles in the configuration
split into two classes: Consider any circle C' along with all circles that cross C' at yellow points
to form one class; the remaining circles then form the other class. Lemma 2 shows that any pair
of circles in the same class cross at yellow points; otherwise, they cross at non-yellow points.

Call the circles from the two classes white and black, respectively. Call a region yellow if
its vertices are all yellow. Let w and b be the numbers of white and black circles, respectively;
clearly, w + b = n. Assume that w > b, and that there is no yellow region. Clearly, b > 1,
otherwise each region is yellow. The white circles subdivide the plane into w(w — 1) + 2 larger
regions — call them white. The white regions (or rather their boundaries) subdivide each black
circle into black arcs. Since there are no yellow regions, each white region contains at least one
black arc.

Consider any white region; let it contain ¢ > 1 black arcs. We claim that the number of
points at which these ¢ arcs cross does not exceed ¢t — 1. To prove this, consider a multigraph
whose vertices are these black arcs, two vertices being joined by an edge for each point at which
the corresponding arcs cross. If this graph had more than ¢t — 1 edges, it would contain a cycle,
since it has ¢ vertices; this cycle would correspond to a closed contour formed by black sub-arcs,
lying inside the region under consideration. This contour would, in turn, define at least one
yellow region, which is impossible.

Let ¢; be the number of black arcs inside the i*" white region. The total number of black
arcs is ), t; = 2wb, and they cross at 2(;) = b(b— 1) points. By the preceding,

w2—w+2 w2—w+2
bb—1)< >, (ti—1)= > ti—(w—w+2)=2wb— (v’ —w+2),
=1 =1

or, equivalently, (w —b)? < w+b—2 = n — 2, which is the case if and only if w —b < |v/n — 2|.
Consequently, b < w < (n+ [v/n —2[) /2, so there are at most 2(w — 1) < n + [v/n —2] — 2
yellow vertices on each circle — a contradiction.
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Geometry

Let ABC' be an acute-angled triangle with circumcircle I'. Let D and E be points on
the segments AB and AC, respectively, such that AD = AFE. The perpendicular bisectors of
the segments BD and C'E intersect the small arcs AB and AC at points F and G respectively.
Prove that DE || FG.

(Greece)

Solution 1. In the sequel, all the considered arcs are small arcs.
Let P be the midpoint of the arc BC. Then AP is the bisector of ZBAC, hence, in the
isosceles triangle ADFE, AP | DE. So, the statement of the problem is equivalent to AP 1 F'G.
In order to prove this, let K be the second intersection of I' with F'D. Then the triangle
F'BD is isosceles, therefore

LAKF = /ABF = /FDB = LZADK,

yielding AK = AD. In the same way, denoting by L the second intersection of I' with GE, we
get AL = AFE. This shows that AK = AL.

Now /FBD = /FDB gives AF = BF + AK = BF + AL, hence BF = LF. In a similar
way, we get CG = GK. This yields
AF+PG AL+ LF+PC+CG KL+LB+BC+CK
2 B 2 4

/(AP,FG) = — 90°.

Solution 2. Let Z = ABn FG,T = AC n FG. It suffices to prove that ZATZ = L/ AZT.
Let X be the point for which FF X AD is a parallelogram. Then

LFXA=/FDA=180°—- ZFDB = 180° — ZFBD,

where in the last equality we used that F'D = FB. It follows that the quadrilateral BF X A is
cyclic, so X lies on T'.
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Analogously, if Y is the point for which GY AF is a parallelogram, then Y lies on I'. So
the quadrilateral X FGY is cyclic and FX = AD = AE = GY, hence X FGY is an isosceles

trapezoid.
Now, by XF' || AZ and YG || AT, it follows that LZATZ = /YGF = /XFG = LAZT.

Solution 3. As in the first solution, we prove that FG L AP, where P is the midpoint of the
small arc BC.

Let O be the circumcentre of the triangle ABC', and let M and N be the midpoints of the
small arcs AB and AC, respectively. Then OM and ON are the perpendicular bisectors of AB
and AC, respectively.

The distance d between OM and the perpendicular bisector of BD is %AB — %BD = %AD,
hence it is equal to the distance between ON and the perpendicular bisector of C'E.

This shows that the isosceles trapezoid determined by the diameter ¢ of I' through M and
the chord parallel to ¢ through F' is congruent to the isosceles trapezoid determined by the
diameter ¢’ of I through N and the chord parallel to ¢ through G. Therefore MF = NG,
yielding M N || FG.

Now

Z(MN, AP) = J (AN + PO + ON) = (4B + BC + OA) = 00",

==

hence M N | AP, and the conclusion follows.
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Let ABC be a triangle with AB = AC, and let M be the midpoint of BC'. Let P be
a point such that PB < PC and PA is parallel to BC'. Let X and Y be points on the lines
PB and PC, respectively, so that B lies on the segment PX, C' lies on the segment PY, and
/PXM = /ZPY M. Prove that the quadrilateral APXY is cyclic.

(Australia)

Solution. Since AB = AC, AM is the perpendicular bisector of BC, hence /PAM =
LAMC = 90°.

Now let Z be the common point of AM and the perpendicular through Y to PC (notice
that Z lies on to the ray AM beyond M). We have /PAZ = /PY Z = 90°. Thus the points
P, A, Y, and Z are concyclic.

Since /CMZ = /CYZ = 90° the quadrilateral CY ZM is cyclic, hence ZCZM =
ZCY M. By the condition in the statement, ZCY M = ZBXM, and, by symmetry in ZM,
LCZM = /BZM. Therefore, /ZBXM = ZBZM. It follows that the points B, X, Z, and M
are concyclic, hence /BX 7 = 180° — ZBMZ = 90°.

Finally, we have /PX7Z = /PYZ = /PAZ = 90°, hence the five points P, A, X,Y, Z are
concyclic. In particular, the quadrilateral APXY is cyclic, as required.

Comment 1. Clearly, the key point Z from the solution above can be introduced in several different
ways, e.g., as the second meeting point of the circle CMY and the line AM, or as the second meeting
point of the circles CMY and BM X, etc.

For some of definitions of Z its location is not obvious. For instance, if Z is defined as a common
point of AM and the perpendicular through X to PX, it is not clear that Z lies on the ray AM
beyond M. To avoid such slippery details some more restrictions on the construction may be required.

Comment 2. Let us discuss a connection to the Miquel point of a cyclic quadrilateral. Set X’ =
MX nPC,Y =MY nPB,and Q = XY n X'Y’ (see the figure below).

We claim that BC || PQ. (One way of proving this is the following. Notice that the quadruple
of lines PX, PM, PY, PQ is harmonic, hence the quadruple B, M, C, PQ n BC of their intersection
points with BC' is harmonic. Since M is the midpoint of BC, PQ n BC is an ideal point, i.e.,
PQ | BC.)

It follows from the given equality /PXM = /ZPY M that the quadrilateral XY X'Y” is cyclic.
Note that A is the projection of M onto PQ. By a known description, A is the Miquel point for the
sidelines XY, XY’ XY, X'Y’. In particular, the circle PXY passes through A.
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Comment 3. An alternative approach is the following. One can note that the (oriented) lengths of
the segments C'Y and BX are both linear functions of a parameter ¢t = cot ZPXM. As t varies, the
intersection point S of the perpendicular bisectors of PX and PY traces a fixed line, thus the family
of circles PXY has a fixed common point (other than P). By checking particular cases, one can show
that this fixed point is A.

Comment 4. The problem states that ZPXM = ZPY M implies that APXY is cyclic. The original
submission claims that these two conditions are in fact equivalent. The Problem Selection Committee
omitted the converse part, since it follows easily from the direct one, by reversing arguments.
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A circle w of radius 1 is given. A collection T of triangles is called good, if the following
conditions hold:

(7) each triangle from T is inscribed in w;

(74) no two triangles from 7" have a common interior point.

Determine all positive real numbers ¢ such that, for each positive integer n, there exists a

good collection of n triangles, each of perimeter greater than t.
(South Africa)

Answer: t € (0,4].

Solution. First, we show how to construct a good collection of n triangles, each of perimeter
greater than 4. This will show that all ¢ < 4 satisfy the required conditions.

Construct inductively an (n + 2)-gon BAjA,...A,C inscribed in w such that BC is a
diameter, and BA;A,, BAsAs, ..., BA,_1A,, BA,C is a good collection of n triangles. For
n = 1, take any triangle BA;C inscribed in w such that BC'is a diameter; its perimeter is greater
than 2BC' = 4. To perform the inductive step, assume that the (n + 2)-gon BA;Ay... A,C is
already constructed. Since A,B + A,C + BC > 4, one can choose a point A, 1 on the small
arc C’Tn, close enough to C, so that A, B+ A, A, 1+ BA, . is still greater than 4. Thus each
of these new triangles BA, A, 1 and BA, 1C has perimeter greater than 4, which completes
the induction step.

A
A, !

As

C\ [B

We proceed by showing that no ¢ > 4 satisfies the conditions of the problem. To this end,
we assume that there exists a good collection T" of n triangles, each of perimeter greater than t,
and then bound n from above.

Take € > 0 such that ¢t = 4 + 2e.

Claim. There exists a positive constant ¢ = o(e) such that any triangle A with perimeter
2s = 4 + 2¢, inscribed in w, has area S(A) at least o.
Proof. Let a, b, ¢ be the side lengths of A. Since A is inscribed in w, each side has length at
most 2. Therefore, s —a > (2 +¢) —2 = ¢. Similarly, s —b > ¢ and s — ¢ > . By Heron’s
formula, S(A) = 4/s(s —a)(s — b)(s — ¢) = /(2 +¢)e3. Thus we can set o(c) = /(2 + £)e3.
0
Now we see that the total area S of all triangles from 7 is at least no(e). On the other
hand, S does not exceed the area of the disk bounded by w. Thus no(e) < 7, which means
that n is bounded from above.

b
Comment 1. One may prove the Claim using the formula S = Z—]; instead of Heron’s formula.

Comment 2. In the statement of the problem condition (i) could be replaced by a weaker one: each
triangle from 7T lies within w. This does not affect the solution above, but reduces the number of ways
to prove the Claim.



Shortlisted problems — solutions

41

This page is intentionally left blank



42 Cluj-Napoca — Romania, 3—14 July 2018

A point T is chosen inside a triangle ABC. Let A, B;, and C; be the reflections
of T in BC, CA, and AB, respectively. Let € be the circumcircle of the triangle A;B;C}.
The lines A;T, BiT, and C;T meet €) again at Ay, By, and (5, respectively. Prove that the
lines AAy, BB>, and C'Cy are concurrent on €.

(Mongolia)

Solution. By «x (¢, n) we always mean the directed angle of the lines ¢ and n, taken modulo 180°.

Let C'Cy meet Q again at K (as usual, if C'Cy is tangent to 2, we set T = C3). We show
that the line BBs contains K; similarly, AAs will also pass through K. For this purpose, it
suffices to prove that

{(CQC, CQAl) = %:(BQB, BQAl). (].)

By the problem condition, C'B and C'A are the perpendicular bisectors of TA; and T By,
respectively. Hence, C' is the circumcentre of the triangle A;T B;. Therefore,

¥(CA;,CB) = ¥(CB,CT) = ¥(B, Ay, BiT) = (B, Ay, B Bs).
In circle ©2 we have %:(BlAl, BlBg) = %:(CQAl, CQBQ). ThllS,
*(CA,,CB) = x(B1 Ay, B1By) = x(C2A;,C3By). (2)

Similarly, we get
{(BAl, BC) = %:(ClAl, 0102) = {(BQAl,BQCQ). (3)

The two obtained relations yield that the triangles A;BC' and A;ByCy are similar and
equioriented, hence

AlBQ . Alcg
AB AC

and %:(AlB,AlC) = %:(AlBQ,A102).
The second equality may be rewritten as x(A;B, A1 Bs) = x(A,C, A1Cy), so the triangles

A1 BBy and A;CCy are also similar and equioriented. This establishes (1).
Cy 4

N

o/ )

B O]

Comment 1. In fact, the triangle A; BC is an image of A;BsC5 under a spiral similarity centred
at Aq; in this case, the triangles ABBy and ACC5 are also spirally similar with the same centre.
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Comment 2. After obtaining (2) and (3), one can finish the solution in different ways.

For instance, introducing the point X = BC' n ByC, one gets from these relations that the 4-tuples
(A1, B, B2, X) and (A1,C,Cy, X) are both cyclic. Therefore, K is the Miquel point of the lines BBy,
CCs, BC, and ByCs; this yields that the meeting point of BBy and C'Cs lies on 2.

Yet another way is to show that the points A1, B, C, and K are concyclic, as
%:(KC, KAl) = %:(BQCQ,BQAl) = %:(BC, BAl)

By symmetry, the second point K’ of intersection of BBy with  is also concyclic to Ay, B, and C,

hence K’ = K.
Ay

)

Ay

Comment 3. The requirement that the common point of the lines AAy, BBy, and C'Cy should lie
on {2 may seem to make the problem easier, since it suggests some approaches. On the other hand,
there are also different ways of showing that the lines AAy, BBs, and CCs are just concurrent.

In particular, the problem conditions yield that the lines A>T, BoT', and CyT are perpendicular to
the corresponding sides of the triangle ABC. One may show that the lines AT, BT, and C'T are also
perpendicular to the corresponding sides of the triangle A3 BoCy, i.e., the triangles ABC and A;ByCo
are orthologic, and their orthology centres coincide. It is known that such triangles are also perspective,
i.e. the lines AAy, BBs, and C'Cy are concurrent (in projective sense).

To show this mutual orthology, one may again apply angle chasing, but there are also other methods.
Let A’, B’, and C’ be the projections of T' onto the sides of the triangle ABC. Then AT -TA' =
BsT - TB' = CyT - TC', since all three products equal (minus) half the power of T with respect to Q.
This means that Ay, Bs, and Cy are the poles of the sidelines of the triangle ABC with respect to
some circle centred at T and having pure imaginary radius (in other words, the reflections of As, Bs,
and Cy in T are the poles of those sidelines with respect to some regular circle centred at T'). Hence,
dually, the vertices of the triangle ABC' are also the poles of the sidelines of the triangle Ao BoC.
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Lett ABC' be a triangle with circumcircle w and incentre I. A line ¢ intersects the
lines AI, BI, and CI at points D, E, and F, respectively, distinct from the points A, B, C,
and I. The perpendicular bisectors z, y, and z of the segments AD, BE, and C'F, respectively
determine a triangle ©. Show that the circumcircle of the triangle © is tangent to w.

(Denmark)

Preamble. Let X =ynz, Y =xn2 Z =1xnyand let 2 denote the circumcircle of the
triangle XY Z. Denote by Xy, Yy, and Z, the second intersection points of AI, BI and C1,
respectively, with w. It is known that Y37, is the perpendicular bisector of AI, ZyX, is the
perpendicular bisector of BI, and XY} is the perpendicular bisector of C'I. In particular, the
triangles XY Z and X,YyZ, are homothetic, because their corresponding sides are parallel.

The solutions below mostly exploit the following approach. Consider the triangles XY Z
and XyYpZy, or some other pair of homothetic triangles A and § inscribed into €2 and w,
respectively. In order to prove that {2 and w are tangent, it suffices to show that the centre T’
of the homothety taking A to § lies on w (or ), or, in other words, to show that A and § are
perspective (i.e., the lines joining corresponding vertices are concurrent), with their perspector
lying on w (or Q).

We use directed angles throughout all the solutions.

Solution 1.

Claim 1. The reflections ¢,, ¢, and /. of the line ¢ in the lines x, y, and z, respectively, are
concurrent at a point 7" which belongs to w.

Proof. Notice that x(lp, ) = (b, £) + x(£,0.) = 2x(y, £) + 2%({, 2) = 2¥%(y,2). Buty L BI
and z L CT implies x(y, z) = x(BI,IC), so, since 2x(BI,IC) = x(BA, AC), we obtain

x(6,0.) = x(BA, AC). (1)

Since A is the reflection of D in x, A belongs to {,; similarly, B belongs to ¢,. Then (1)
shows that the common point 7”7 of ¢, and ¢, lies on w; similarly, the common point 7" of /,
and £, lies on w.

If B¢/, and B ¢ (., then T" and T” are the second point of intersection of ¢, and w, hence
they coincide. Otherwise, if, say, B € (., then ¢, = BC, so <(BA, AC) = x(l,(.) = <(4, BC),
which shows that ¢, is tangent at B to w and 7" = T” = B. So 1" and T” coincide in all the
cases, and the conclusion of the claim follows. ]
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Now we prove that X, Xy, T are collinear. Denote by D, and D, the reflections of the point
D in the lines y and z, respectively. Then D, lies on ¢, D, lies on /., and

¥(DyX, XD.) = ¥(DyX,DX) + ¥(DX,XD,) = 2x(y, DX) + 2% (DX, 2) = 2%(y, 2)
— ¥(BA, AC) = (BT, TC),

hence the quadrilateral X D,T'D, is cyclic. Notice also that since XD, = XD = XD,, the
points D, Dy, D, lie on a circle with centre X. Using in this circle the diameter D.D., yields
X (DpD., D.X) = 90° + x(DyD.,, D.X) = 90° + <(DyD, DD.). Therefore,

(b, XT) = (DT, XT) = ¥(DyD., D.X) = 90° + x(DyD, DD,.)
— 90° + x(BI, IC) = ¥(BA, Al) = ¥(BA, AX,) = %(BT,TX,) = %(ly, XoT),

so the points X, Xg, T are collinear. By a similar argument, Y, Yy, T and Z, Zy, T are collinear.
As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may proceed in another way. As it was shown, the reflections
of £ in the sidelines of XY Z are concurrent at T'. Thus £ is the Steiner line of T with respect to AXY Z
(that is the line containing the reflections Ty, Ty, T. of T in the sidelines of XY Z). The properties of
the Steiner line imply that T lies on 2, and ¢ passes through the orthocentre H of the triangle XY 7.

Let H,, Hp, and H. be the reflections of the point H in the lines z, y, and z, respectively. Then
the triangle H,HyH, is inscribed in € and homothetic to ABC' (by an easy angle chasing). Since
H,e/l,, Hy€e by, and H. € £, the triangles H,H,H. and ABC form a required pair of triangles A and
0 mentioned in the preamble.

Comment 2. The following observation shows how one may guess the description of the tangency
point T" from Solution 1.

Let us fix a direction and move the line £ parallel to this direction with constant speed.

Then the points D, E, and F' are moving with constant speeds along the lines AI, BI, and C1I,
respectively. In this case z, y, and z are moving with constant speeds, defining a family of homothetic
triangles XY Z with a common centre of homothety 7. Notice that the triangle XqYyZy belongs to
this family (for ¢ passing through I). We may specify the location of T' considering the degenerate
case when z, y, and z are concurrent. In this degenerate case all the lines x, vy, z, ¢, {4, £y, £, have a
common point. Note that the lines ¢,, ¢, £, remain constant as ¢ is moving (keeping its direction).
Thus T should be the common point of ¢,, £, and /., lying on w.
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Solution 2. As mentioned in the preamble, it is sufficient to prove that the centre 7" of the
homothety taking XY Z to XqYyZ, belongs to w. Thus, it suffices to prove that < (7' X,, TY,) =
x(ZyXo, ZoYy), or, equivalently, (X Xo, YY) = x(ZoXo, ZoY0).

Recall that Y Z and Y, Z, are the perpendicular bisectors of AD and AI, respectively. Then,
the vector T perpendicular to Y Z and shifting the line YyZ, to Y Z is equal to %ﬁ)) Define

the shifting vectors i/ = %I_E, Z = %ﬁ similarly. Consider now the triangle UV'W formed by
the perpendiculars to AI, BI, and CT through D, E, and F, respectively (see figure below).

This is another triangle whose sides are parallel to the corresponding sides of XY Z.

Claim 2. TU = 2XX, IV = 2Y,Y, IW = 27,2.
Proof. We prove one of the relations, the other proofs being similar. To prove the equality of two
vectors it suffices to project them onto two non-parallel axes and check that their projections
are equal.

The projection of )_(07)( onto I B equals y, while the projection of TU onto IB is TE = 2y.
The projections onto the other axis IC' are z and IF = 2% Then IU = QW( follows. O

Notice that the line ¢ is the Simson line of the point I with respect to the triangle UVW;
thus U, V, W, and I are concyclic. It follows from Claim 2 that % (X Xy, YY) = <(IU,IV) =
x(WU,WV) = x(ZyXo, ZoYs), and we are done.

Solution 3. Let I,, I, and I. be the excentres of triangle ABC' corresponding to A, B, and
C, respectively. Also, let u, v, and w be the lines through D, E, and F' which are perpendicular
to Al, BI, and C1I, respectively, and let UV W be the triangle determined by these lines, where
u=VW,v=UW and w = UV (see figure above).

Notice that the line w is the reflection of I/, in the line z, because w, x, and I,I. are
perpendicular to AD and x is the perpendicular bisector of AD. Likewise, v and [,I. are
reflections of each other in y, while w and I, 1, are reflections of each other in z. It follows that
X, Y and Z are the midpoints of Ul,, VI, and W I, respectively, and that the triangles UV W,
XY Z and [,1,1. are either translates of each other or homothetic with a common homothety
centre.

Construct the points 7" and S such that the quadrilaterals UVIW, XYTZ and I,1,S1. are
homothetic. Then T is the midpoint of IS. Moreover, note that ¢ is the Simson line of the
point I with respect to the triangle UV W, hence I belongs to the circumcircle of the triangle
UVW  therefore T" belongs to €.
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Consider now the homothety or translation h; that maps XY ZT to I,1,1.S and the homo-
thety ho with centre I and factor % Furthermore, let h = hy o hy. The transform h can be a
homothety or a translation, and

h(T) = hy (b (T)) = ho (S) = T,

hence T is a fixed point of h. So, h is a homothety with centre 7. Note that h, maps the
excentres I, I, I. to Xy, Yy, Zy defined in the preamble. Thus the centre T" of the homothety
taking XY Z to XoYyZy belongs to €2, and this completes the proof.
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A convex quadrilateral ABC'D satisfies AB - CD = BC - DA. A point X is chosen
inside the quadrilateral so that /X AB = ZXCD and Z/XBC = ZXDA. Prove that ZAX B+
ZOXD = 180°.

(Poland)

Solution 1. Let B’ be the reflection of B in the internal angle bisector of ZAXC, so that
/AXB = /CXB and ZCXB' = ZAXB. If X, D, and B’ are collinear, then we are done.
Now assume the contrary.

On the ray X B’ take a point E such that XFE - XB = XA - XC, so that AAXE ~
ABXC and ACXE ~ ABXA. We have /XCE + /XCD = /XBA+ /ZXAB < 180° and
/XAE + /XAD = /XDA + ZXAD < 180°, which proves that X lies inside the angles
/ZFECD and ZEAD of the quadrilateral EADC. Moreover, X lies in the interior of exactly
one of the two triangles FAD, ECD (and in the exterior of the other).

The similarities mentioned above imply XA - BC'= XB - AF and XB-CFE = XC - AB.
Multiplying these equalities with the given equality AB-CD = BC' - DA, we obtain XA -CD -
CE = XC-AD - AFE, or, equivalently,

XA-DE XC DE )
AD-AE CD-CE’

Lemma. Let PQR be a triangle, and let X be a point in the interior of the angle () PR such that

PX - QR
LQPX = /ZPRX. Then T?)R < lif and only if X lies in the interior of the triangle PQR.
Proof. The locus of points X with ZQPX = ZPRX lying inside the angle QPR is an arc «
of the circle v through R tangent to PQ at P. Let ~y intersect the line QR again at Y (if v
PQ - PR
is tangent to QR, then set Y = R). The similarity AQPY ~ AQRP yields PY = %7}%
Now it suffices to show that PX < PY if and only if X lies in the interior of the triangle PQR.
Let m be a line through Y parallel to P(). Notice that the points Z of v satisfying PZ < PY
are exactly those between the lines m and PQ).

Case 1: 'Y lies in the segment QR (see the left figure below).

In this case Y splits a into two arcs PY and Y R. The arc PY lies inside the triangle PQR,
and PY lies between m and PQ, hence PX < PY for points X € PY. The other arc YR
lies outside triangle PQR, and Y R is on the opposite side of m than P, hence PX > PY for
X e YR.
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Case 2: 'Y lies on the ray QR beyond R (see the right figure below).

In this case the whole arc « lies inside triangle PQ R, and between m and P(Q), thus PX <
PY for all X € a. ]

Applying the Lemma (to AEAD with the point X, and to AECD with the point X),

) ) XA-DE XC-DE )
we obtain that exactly one of two expressions 1D AE and D CE is less than 1, which

contradicts (*).

Comment 1. One may show that AB-CD = XA - XC+ XB-XD. We know that D, X, E are
collinear and /DCFE = /CXD = 180° — ZAX B. Therefore,

sin /AXB sin ZCED
AB-CD =XB- = —mx PE- 5 —7pep — X8 - PE.

Furthermore, XB-DE = XB-(XD+ XE)=XB- XD+ XB-XE=XB-XD+ XA -XC.

Comment 2. For a convex quadrilateral ABCD with AB - CD = BC - DA, it is known that
/DAC + ZABD + /BCA+ ZCDB = 180° (among other, it was used as a problem on the Regional
round of All-Russian olympiad in 2012), but it seems that there is no essential connection between this
fact and the original problem.

Solution 2. The solution consists of two parts. In Part 1 we show that it suffices to prove
that

XB _AB "
XD CD

and
XA_ DA o)
XC BC

In Part 2 we establish these equalities.

Part 1. Using the sine law and applying (1) we obtain
sin/AXB AB CD sinZCXD

sn/XAB XB XD sin/XCD’

so sin ZAXB = sin ZCXD by the problem conditions. Similarly, (2) yields sin ZDXA =
sin ZBXC. 1If at least one of the pairs (LZAXB,/ZCXD) and (/BXC,/DXA) consists of
supplementary angles, then we are done. Otherwise, ZAXB = /CXD and /DXA = /Z/BXC.
In this case X = AC n BD, and the problem conditions yield that ABCD is a parallelogram
and hence a rhombus. In this last case the claim also holds.

Part 2. To prove the desired equality (1), invert ABC'D at centre X with unit radius; the
images of points are denoted by primes.
We have

LABC =/XBA+/XBC' =/XAB+/XCB=/XCD+ /XCB = /BCD.
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Similarly, the corresponding angles of quadrilaterals ABC'D and D’ A’B'C" are equal.
Moreover, we have

AB CD BC DA
A/B/'C/D/: . — . :B/ /'D/A/.
XA-XB XC-XD XB-XC XD-DA ¢
B/
B
. X
A o
C/
C
D
D/

Now we need the following Lemma.

Lemma. Assume that the corresponding angles of convex quadrilaterals XY ZT and X'Y'Z'T’
are equal, and that XY - ZT = YZ -TX and X'Y' - Z'T" = Y'Z' - T'X’. Then the two
quadrilaterals are similar.

Proof. Take the quadrilateral XY Z,T; similar to X'Y'Z"T" and sharing the side XY with
XY ZT, such that Z; and T; lie on the rays YZ and XT, respectively, and Z,T} || ZT. We
need to prove that Z; = Z and T} = T. Assume the contrary. Without loss of generality,
TX > XTi. Let segments XZ and Z,T; intersect at U. We have

nXx nXxX TX XY XY

TZ, "TWW 2T YZ " YZ

thus VX -YZ, <T1Z; - XY. A contradiction. ]
X Y
A
T
Z
T
It follows from the Lemma that the quadrilaterals ABC'D and D’A’B’'C” are similar, hence
BC AB  AB  XD-XA AB XD
AB DA XA-XB DA  AD XB’

and therefore
XB AB? AB? AB

XD~ BC-AD ~ AB-CD  CD’
We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be crucial. On the other hand, after the
proof of the similarity D’A’B’C' ~ ABCD one may finish the solution in different ways, e.g., as
follows. The similarity taking D’A’B’C’' to ABCD maps X to the point X’ isogonally conjugate
of X with respect to ABCD (i.e. to the point X’ inside ABCD such that /BAX = /DAX’,
/CBX = /ABX', /DCX = /BCX', ZADX = /ZCDX'). Tt is known that the required equality
LAXB + £ZCXD = 180° is one of known conditions on a point X inside ABCD equivalent to the
existence of its isogonal conjugate.
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- Let O be the circumcentre, and €2 be the circumcircle of an acute-angled triangle ABC.
Let P be an arbitrary point on €, distinct from A, B, C, and their antipodes in 2. Denote
the circumcentres of the triangles AOP, BOP, and COP by O4, Og, and O¢, respectively.
The lines ¢4, {p, and - perpendicular to BC, C'A, and AB pass through O4, Op, and Og,
respectively. Prove that the circumcircle of the triangle formed by ¢4, g, and ¢ is tangent to
the line OP.

(Russia)

Solution. As usual, we denote the directed angle between the lines a and b by %(a,b). We
frequently use the fact that a; 1 as and by L by yield x(ay, b1) = x(ag, bo).

Let the lines /g and ¢ meet at L,; define the points Lg and Lo similarly. Note that
the sidelines of the triangle L 4LgLc are perpendicular to the corresponding sidelines of ABC.
Points O 4, Op, O¢ are located on the corresponding sidelines of L 4 LgL¢c; moreover, O 4, Op,
O¢ all lie on the perpendicular bisector of OP.

Claim 1. The points Lg, P, O4, and O¢ are concyclic.
Proof. Since O is symmetric to P in 040, we have

{(OAP, Ocp) = {(Oc0,0AO) = {(CP, AP) = {(CB,AB) = {(OALB,OcLB). ]

Denote the circle through Lg, P, O4, and O¢ by wg. Define the circles wy and we similarly.
Claim 2. The circumcircle of the triangle L4 Lg Lo passes through P.

Proof. From cyclic quadruples of points in the circles wp and we, we have

{(LCLA,LCP) = {(LcOB,LCP) = {(OAOB,OAP)
== %:(OAOC,OAP) == {(LBOc,LBP) == %:(LBLA,LBP). |:|

Claim 3. The points P, Lo, and C are collinear.

PT‘OOf. We have {(PLc,LcLA) = {(PLc,LcoB) = {(POA,OAOB). Further, since OA is
the centre of the circle AOP, x(PO,040p) = x(PA, AO). As O is the circumcentre of the
triangle PC'A, x(PA, AO) = n1/2—x(CA,CP) = <x(CP, LcLy). We obtain <(PL¢, LoLa) =
¥(CP,LcL,), which shows that P e C'Lc¢. O
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Similarly, the points P, L4, A are collinear, and the points P, Lg, B are also collinear.
Finally, the computation above also shows that

$(OP, PLy) = ¥(PA, AO) = ¥(PLe, LoLa),

which means that OP is tangent to the circle PLoLgLc.

Comment 1. The proof of Claim 2 may be replaced by the following remark: since P belongs to the
circles w4 and we, P is the Miquel point of the four lines £4, £, £, and O,O0g0¢.

Comment 2. Claims 2 and 3 can be proved in several different ways and, in particular, in the reverse
order.

Claim 3 implies that the triangles ABC and LaLpgLc are perspective with perspector P. Claim 2
can be derived from this observation using spiral similarity. Consider the centre @ of the spiral similarity
that maps ABC to LaLpLc. From known spiral similarity properties, the points L4, Lp, P,Q are
concyclic, and so are L4, Lo, P, Q.

Comment 3. The final conclusion can also be proved it terms of spiral similarity: the spiral similarity
with centre @ located on the circle ABC maps the circle ABC' to the circle PLoLgLc. Thus these
circles are orthogonal.

Comment 4. Notice that the homothety with centre O and ratio 2 takes O 4 to A’ that is the common
point of tangents to Q at A and P. Similarly, let this homothety take Op to B’ and O¢ to C’. Let
the tangents to  at B and C meet at A”, and define the points B” and C” similarly. Now, replacing
labels O with I, Q with w, and swapping labels A <> A”, B <> B”, C' <> C" we obtain the following

Reformulation. Let w be the incircle, and let I be the incentre of a triangle ABC. Let P be
a point of w (other than the points of contact of w with the sides of ABC'). The tangent to w at P
meets the lines AB, BC, and CA at A’, B’, and C’, respectively. Line 4 parallel to the internal
angle bisector of Z BAC passes through A’; define lines {5 and £ similarly. Prove that the line TP is
tangent to the circumcircle of the triangle formed by £4, £, and {¢.

Though this formulation is equivalent to the original one, it seems more challenging, since the point
of contact is now “hidden”.
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Number Theory

Determine all pairs (n, k) of distinct positive integers such that there exists a positive
g
integer s for which the numbers of divisors of sn and of sk are equal.
(Ukraine)

Answer: All pairs (n, k) such that n{ k and &t n.

Solution. As usual, the number of divisors of a positive integer n is denoted by d(n). If
n =[], p;" is the prime factorisation of n, then d(n) = [[,(es; + 1).

We start by showing that one cannot find any suitable number s if & | n or n | k& (and
k # n). Suppose that n | k, and choose any positive integer s. Then the set of divisors of sn is
a proper subset of that of sk, hence d(sn) < d(sk). Therefore, the pair (n, k) does not satisfy
the problem requirements. The case k | n is similar.

Now assume that nt k and k {n. Let pq,...,p; be all primes dividing nk, and consider the

prime factorisations
t

t
n= pr” and k = sz
i=1

i=1

It is reasonable to search for the number s having the form

t
— Vi
= | |pi .
i=1

The (nonnegative integer) exponents ~y; should be chosen so as to satisfy

1 (3 1
HO& + v+ _1 (1)

Bi+v+1

First of all, if a; = ; for some ¢, then, regardless of the value of ~;, the corresponding factor
in (1) equals 1 and does not affect the product. So we may assume that there is no such index 1.
For the other factors in (1), the following lemma is useful.

Lemma. Let a > 3 be nonnegative integers. Then, for every integer M > [ + 1, there exists a
nonnegative integer v such that

aty+l 1 M+l
B+y+1 M M
Proof.
a+vy+1 1 a—f 1
1+ — A = M(a—B)—(+1)=0.
g T Gl (a=p)—(B+1) O

Now we can finish the solution. Without loss of generality, there exists an index u such that
a; > fifori=1,2,...,u,and a; < f; fori =u+1,...,t. The conditions n { k and k { n mean
that 1 <u<t—1.

Choose an integer X greater than all the a; and ;. By the lemma, we can define the
numbers 7; so as to satisfy

RPN | X +1

wty+l uXti fori=1,2,...,u, and
Gi+v+1 uX+i—1

6u+i+7u+i+1_ <t_u)X+Z

fori=1,2,...,t —u.

Oéu+i+/7u+i+1 B (t—u)X—l—i—l
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Then we will have

d(sn) ﬁ uX +1 ﬁ(t—u)X+i—1_u(X+1) (t—u)X

AT — : —1
uX +i—1 411 (t—u)X +i uX (t—u)(X +1) ’

i=1

as required.

Comment. The lemma can be used in various ways, in order to provide a suitable value of s. In
particular, one may apply induction on the number ¢ of prime factors, using identities like

n n? n+1

n—1 n2—1 n
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Let n > 1 be a positive integer. Each cell of an n x n table contains an integer.
Suppose that the following conditions are satisfied:

(1) Each number in the table is congruent to 1 modulo n;

(79) The sum of numbers in any row, as well as the sum of numbers in any column, is congruent
to n modulo n?.

Let R; be the product of the numbers in the *" row, and C; be the product of the numbers in
the j'" column. Prove that the sums Ry +---+ R,, and C; + - - - + C,, are congruent modulo n*.
(Indonesia)

Solution 1. Let A;; be the entry in the i row and the j™ column; let P be the product of
all n? entries. For convenience, denote a;j = A;; —1and r; = R; — 1. We show that

Zn:RZ (n—1)+ P (mod n*). (1)

i=

Due to symmetry of the problem conditions, the sum of all the C} is also congruent to (n — 1)+ P
modulo n*, whence the conclusion.

By condition (), the number n divides a; ; for all < and j. So, every product of at least two
of the a;; is divisible by n?, hence

R; = ﬁ (1+a;;) = 1+Za”+ Z Qi jy @iyt = 1+iam = 1_n+znlAi,j (mod nz)
i=1 = L

1<ji<gao<sn

for every index 4. Using condition (i), we obtain R; =1 (mod n?), and so n? | r;.
Therefore, every product of at least two of the 7; is divisible by n*. Repeating the same
argument, we obtain

P = HRi = H(l +r;) =1 +ZTZ~ (mod n*),
i=1 i=1 i=1
whence . .
ERZ =n+2ri:n (P—-1) (mod n®)
i=1 i=1
as desired.

Comment. The original version of the problem statement contained also the condition
(4ii) The product of all the numbers in the table is congruent to 1 modulo n*.

This condition appears to be superfluous, so it was omitted.

Solution 2. We present a more straightforward (though lengthier) way to establish (1). We
also use the notation of a; ;.

By condition (7), all the a; ; are divisible by n. Therefore, we have

n n
P = HH + CL” =1+ Z Qi j + Z Qi ,jy Qig o

i=1 j= (4,9) (i1,51), (42,32)

4
+ Z @iy 51 Qig, 52 Aig, i (mOd n )7
(i1,51), (12,52); (43,J3)
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where the last two sums are taken over all unordered pairs/triples of pairwise different pairs
(7,7); such conventions are applied throughout the solution.

Similarly,
n n
— 4
DBi=2 [0 +a)=n+Y Dla;+D) D @i+, D, Gijina; (modnt).
i=1 i=1j=1 g i J1,J2 i J1,42,J3
Therefore,
P+ (n - 1) - ZRZ' = Z @iy 1 Qig g + Z iy ,j1 Qig, 52 Aig, j
i (ilvjl)v(i27j2) (ilvjl)v(i27j2)7(i37j3)
BEZD) 11 #12 #1371
4
+ Z iy 51 Wig, 52 Aig, (mOd n )
(i1,51), (i2,42), (i3,53)
11 #12=13

We show that in fact each of the three sums appearing in the right-hand part of this congruence
is divisible by n?; this yields (1). Denote those three sums by i, 35, and Y3 in order of
appearance. Recall that by condition (ii) we have

2 a;; =0 (mod n?) for all indices q.

J
For every two indices 7; < i we have
_ 4
S St = (Seun ) (Do) =0 tmodnt)
J1 g2 J1 J2
since each of the two factors is divisible by n?. Summing over all pairs (i, i2) we obtain n* | ;.

Similarly, for every three indices i; < 75 < i3 we have
DS wnatintnn = (Soan ) (Do) (Do)
Ji Jjz Js J1 J2 J3
which is divisible even by n®. Hence n* | ¥,.

Finally, for every indices i # 75 = i3 and js < j3 we have

_ 4
Wiy jo * iy js 'Zail,jl =0 (mod n"),

J1

since the three factors are divisible by n, n, and n?, respectively. Summing over all 4-tuples of
indices (i1, 19, J2, Jj3) we get nt | Xs.
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C efine the sequence ag,ay, as, . .. a, = 2" + . Prove that there are infinite
Define th by 2n 4 oln2l p that th infinitely
many terms of the sequence which can be expressed as a sum of (two or more) distinct terms

of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
(Serbia)

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0
or 1) distinct terms of the sequence. We say that two nonnegative integers b and ¢ are equivalent
(written as b ~ ¢) if they are either both representable or both non-representable.

One can easily compute

Sn—l =ag+ -+ ap_1 = PALE 2["/2] + 2["/2J —3.
Indeed, we have S, — S,_; = 2" + 212l — ¢, so we can use the induction. In particular,

Sop_1 = 2%k 4 ok+1l _ 3,

Note that, if n > 3, then 2"/ > 22 > 3, 5o

Sp_y = 2" 4 221 poln2l g5 gn y oln2l —

Also notice that S,_; — a, = 22 —3 < q,,.

The main tool of the solution is the following claim.
Claim 1. Assume that b is a positive integer such that S, | —a, < b < a, for some n > 3.
Then b ~ S,,_1 —b.
Proof. As seen above, we have S,,_; > a,. Denote ¢ = S,,_; — b; then S,_1 —a, < ¢ < a,, SO
the roles of b and ¢ are symmetrical.

Assume that b is representable. The representation cannot contain a; with ¢ > n, since

b < a,. So bis the sum of some subset of {ag, a1, ..., a,_1}; then ¢ is the sum of the complement.
The converse is obtained by swapping b and c. ]

We also need the following version of this claim.

Claim 2. For any n > 3, the number a,, can be represented as a sum of two or more distinct
terms of the sequence if and only if S,_; — a, = 2I"/2l — 3 is representable.

Proof. Denote ¢ = S,_1 — a, < a,. If a, satisfies the required condition, then it is the sum

of some subset of {ag,ay,...,a,_1}; then c is the sum of the complement. Conversely, if ¢ is
representable, then its representation consists only of the numbers from {aq, ..., a,_1}, so a, is
the sum of the complement. ]

By Claim 2, in order to prove the problem statement, it suffices to find infinitely many
representable numbers of the form 2! — 3, as well as infinitely many non-representable ones.
Claim 3. For every t > 3, we have 2! — 3 ~ 2476 —3 and 246 -3 > 2! — 3.

Proof. The inequality follows from ¢ > 3. In order to prove the equivalence, we apply Claim 1
twice in the following manner.

First, since Sop_g — @99 = 2071 —3 < 28 — 3 < 22072 1 2071 — @5, ,, by Claim 1 we have
20— 3~ Sy 3 — (28 —3) =222

Second, since Sy_7 — au_g = 2273 =3 < 2272 < 2476 L 92073 — 4, by Claim 1 we have
22t72 ~ S4t77 _ 222572 — 24t76 —3.

Therefore, 28 — 3 ~ 22172 ~ 246 _ 3 a5 required. O

Now it is easy to find the required numbers. Indeed, the number 2° — 3 = 5 = ag + a; is
representable, so Claim 3 provides an infinite sequence of representable numbers

23_3“26—3~218—3~...,\,2t_3~24t—6_3~
On the other hand, the number 27 — 3 = 125 is non-representable (since by Claim 1 we have

125 ~ Sg — 125 =24 ~ Sy — 24 = 17 ~ S3 — 17 = 4 which is clearly non-representable). So
Claim 3 provides an infinite sequence of non-representable numbers

27—3~222—3~282—3~...,\,2t_3~24t—6_3~
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Solution 2. We keep the notion of representability and the notation S,, from the previous
solution. We say that an index n is good if a, writes as a sum of smaller terms from the
sequence ag, ay,.... Otherwise we say it is bad. We must prove that there are infinitely many
good indices, as well as infinitely many bad ones.

Lemma 1. If m > 0 is an integer, then 4™ is representable if and only if either of 2m + 1 and
2m + 2 is good.

Proof. The case m = 0 is obvious, so we may assume that m > 1. Let n = 2m + 1 or 2m + 2.
Then n > 3. We notice that

Sn—l < Qp—2 + Qn.

The inequality writes as 2% + 2["/21 4 2ln/2l _ 3 < on 4 oln/2l 4 on=2 4 oln/2l=1 " o a5 20"/21 <
2n=2 4 oln/21=1 L 3 Tf n > 4, then n/2 < n — 2,50 [n/2] <n—2and 2" <272 Forn =3
the inequality verifies separately.

If n is good, then a, writes as a,, = a;, +--- + a;., where r > 2 and 7; < --- < 7, < n.
Then i, =n —1 and 7,1 = n — 2, for if n — 1 or n — 2 is missing from the sequence i1, ..., i,
then a;, +---+a;, <ap+---+ap_3+an_1 =S,-1 —an_2 < a,. Thus, if n is good, then both
a, — a,—1 and a, — a,_1 — a,_o are representable.

We now consider the cases n = 2m + 1 and n = 2m + 2 separately.

If n =2m+ 1, then a, — ap_1 = doms1 — Aoy = (221 +27) — (22 4+ 2™) = 22™. So we
proved that, if 2m + 1 is good, then 2?™ is representable. Conversely, if 22™ is representable,
then 22" < ay,,, so 2™ is a sum of some distinct terms a; with i < 2m. It follows that
Aomi1 = Qom + 22™ writes as ag,, plus a sum of some distinct terms a; with ¢ < 2m. Hence
2m + 1 is good.

If n =2m+ 2, then a, — a,_1 — Gpn_2 = Aomyo — Aomi1 — Qo = (22MF2 4 2mHL) — (22mFL 4
2m) — (22m 4 2™) = 22™ So we proved that, if 2m + 2 is good, then 2?™ is representable.
Conversely, if 22™ is representable, then, as seen in the previous case, it writes as a sum of some
distinct terms a; with i < 2m. Hence aomio = Qomi1 + Gom + 22™ writes as aomi1 + dopm plus a
sum of some distinct terms a; with ¢ < 2m. Thus 2m + 2 is good. ]

Lemma 2. If k > 2, then 2*%~2 is representable if and only if 2¢*! is representable.
In particular, if s > 2, then 4° is representable if and only if 4*=3 is representable. Also,
445—3 > 45,

24k—2

Proof. We have 2**=2 < q4;_,, so in a representation of we can have only terms a; with

1 < 4k — 3. Notice that

ap+ -+ agpg = 2872 4 220 3 <92 4 92k 4 ok _ odh=2 4 .
Hence, any representation of 2%*~2 must contain all terms from ag to ag._3. (If any of these
terms is missing, then the sum of the remaining ones is < (ag + - -+ + aup_3) — age < 2%72))
Hence, if 2%~2 is representable, then 242 — Y% "3 4 is representable. But
k-3
24]672 . Z a; = 24]672 o (S4k73 . S2k:71) _ 24]672 o (24]672 + 22k o 3) + (22k + 2k+1 - 3) _ 2k+1.
i—2k

So, if 2*=2 is representable, then 2**! is representable. Conversely, if 2¥*! is representable,
then 2F+1 < 22k 4 2k — (g, so 25! writes as a sum of some distinct terms a; with i < 2k. Tt
follows that 242 = Zﬁi;,f a; + 281 writes as asp_3 + Qap_a + - - + a9y, plus the sum of some
distinct terms a; with ¢ < 2k. Hence 2%~2 is representable.

For the second statement, if s > 2, then we just take k = 25 —1 and we notice that 2F+1 = 4°
and 2472 = 44573 Also, s > 2 implies that 45 — 3 > s. 0
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Now 42 = ay+as is representable, whereas 4° = 4096 is not. Indeed, note that 45 = 2'2 < @,

so the only available terms for a representation are ay,...,a1, i.e., 2, 3, 6, 10, 20, 36, 72,
136, 272, 528, 1056, 2080. Their sum is S7; = 4221, which exceeds 4096 by 125. Then any
representation of 4096 must contain all the terms from ay,...,a;; that are greater that 125,

i.e., 136, 272, 528, 1056, 2080. Their sum is 4072. Since 4096 — 4072 = 24 and 24 is clearly not
representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we can obtain infinitely many rep-
resentable powers of 4, as well as infinitely many non-representable ones. By Lemma 1, this
solves our problem.
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Let ay, Az, ..

. Qn, ... be a sequence of positive integers such that
a1 Ap—1 ap,
L —

Gz  as Qn ay

is an integer for all n > k, where k is some positive integer. Prove that there exists a positive
integer m such that a, = a,,, for all n > m.

(Mongolia)
Solution 1. The argument hinges on the following two facts: Let a, b, ¢ be positive integers
such that N = b/c + (c — b)/a is an integer.

(1) If ged(a, ¢) = 1, then ¢ divides b; and
(2) If ged(a, b, ¢) = 1, then ged(a, b) = 1.

To prove (1), write ab = c¢(aN + b — ¢). Since ged(a,c) = 1, it follows that ¢ divides b. To
prove (2), write ¢ — bc = a(cN — b) to infer that a divides ¢® — be. Letting d = ged(a, b), it
follows that d divides ¢2, and since the two are relatively prime by hypothesis, d = 1.

Now, let s, = aj/as + as/az + -+ + a,_1/a, + ay/ay, let 6, = ged(ay, an, a,4+1) and write

(7% Ap+1 — Ap an/én an+1/5n - a'n/én
An+1 a a'n+1/ n al/ n

Let n > k. Since ged(ay /0, an/on, any1/0,) = 1, it follows by (2) that ged(aq/d,, a,/6,) =1
Let d,, = ged(aq, ay). Then d, = 6, - ged(ay /0y, an/dyn) = On, so d,, divides a,,1, and therefore
d,, divides d,, 1.

Consequently, from some rank on, the d,, form a nondecreasing sequence of integers not
exceeding aq, so d, = d for all n > ¢, where ¢ is some positive integer.

Finally, since ged(aq/d, a,11/d) = 1, it follows by (1) that a,,1/d divides a,,/d, so a,, = a1
for all n > ¢. The conclusion follows.

Solution 2. We use the same notation s,. This time, we explore the exponents of primes in
the prime factorizations of the a,, for n > k.
To start, for every n > k, we know that the number

(07 Ap+1 (07%
pon (%)
An41 a a1

Spn+l — Sn =

is integer. Multiplying it by a; we obtain that aja,/a,,1 is integer as well, so that a, 1 | a1a,.
This means that a, | a’f‘kak, so all prime divisors of a, are among those of ajag. There are
finitely many such primes; therefore, it suffices to prove that the exponent of each of them in
the prime factorization of a,, is eventually constant.

Choose any prime p | ajag. Recall that v,(q) is the standard notation for the exponent of p
in the prime factorization of a nonzero rational number ¢. Say that an index n > k is large if
vp(an) = vp(ay). We separate two cases.

Case 1: There exists a large index n.

If v,(ans1) < vp(ay), then v,(a,/a,41) and v,(a,/a,) are nonnegative, while v,(a,41/a1) < 0;
hence (*) cannot be an integer. This contradiction shows that index n + 1 is also large.

On the other hand, if v,(a,11) > vp(ay), then vy(an/an41) < 0, while v, (a1 —ay)/a1) = 0,
so (*) is not integer again. Thus, v,(a1) < vp(ant1) < vp(ay).

The above arguments can now be applied successively to indices n + 1, n + 2, ..., showing
that all the indices greater than n are large, and the sequence vy(ay), Vp(ani1), Vp(@ni2), ... is
nonincreasing — hence eventually constant.



Shortlisted problems — solutions 63

Case 2: There is no large indez.

We have v,(a1) > v,(a,) for all n > k. If we had v,(ans1) < vy(a,) for some n > k,
then v,(an+1/a1) < vy(an/a1) < 0 < vy(a,/a,+1) which would also yield that (x) is not integer.
Therefore, in this case the sequence v,(ay), vy(ak+1), vp(ag+2), . . . is nondecreasing and bounded
by v,(a;) from above; hence it is also eventually constant.

Comment. Given any positive odd integer m, consider the m-tuple (2,22,...,2™~1 2™). Appending
an infinite string of 1’s to this m-tuple yields an eventually constant sequence of integers satisfying
the condition in the statement, and shows that the rank from which the sequence stabilises may be
arbitrarily large.

There are more sophisticated examples. The solution to part (b) of 10532, Amer. Math. Monthly,
Vol. 105 No. 8 (Oct. 1998), 775-777 (available at https://www.jstor.org/stable/2589009), shows

that, for every integer m > 5, there exists an m-tuple (a1, as,...,a,) of pairwise distinct positive
integers such that ged(aq,a2) = ged(ag,a3) = -+ = ged(am—1,am) = ged(am,a1) = 1, and the sum
ajfag + az/as+ -+ -+ am—1/am + am/al is an integer. Letting a4+ = a1, k = 1,2,..., extends such an

m-tuple to an eventually constant sequence of positive integers satisfying the condition in the statement
of the problem at hand.

Here is the example given by the proposers of 10532. Let by = 2, let by = 1 +by--- b =
1+bk(by—1), k=1, and set By, = by -+ byy—g = by—3— 1. The m-tuple (ay,ag, ..., a,) defined below
satisfies the required conditions:

ap =1, ao=8Bpn+1)By+8, a3=8B,, +1, ap=0by,_ ford<k<m-1,

a 1 B
It is readily checked that a1 < am_1 < Gm_o < -+ < az < ag < a,,. For further details we refer to

the solution mentioned above. Acquaintance with this example (or more elaborated examples derived
from) offers no advantage in tackling the problem.


https://www.jstor.org/stable/2589009
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Four positive integers z, y, z, and ¢ satisfy the relations

ry—zt=x+y==z2+1. (%)

Is it possible that both xy and zt are perfect squares?
(Russia)

Answer: No.

Solution 1. Arguing indirectly, assume that zy = a? and 2t = ¢ with a,c > 0.
Suppose that the number x + y = z + ¢ is odd. Then z and y have opposite parity, as well
as z and t. This means that both zy and zt are even, as well as zy — 2t = x + y; a contradiction.
xty z+t

Thus, z + y is even, so the number s = = = 2= is a positive integer.

Next, we set b = @, d= @ Now the problem conditions yield
ss=a*+b =+ d (1)

and
2s=a*—c* =d* - V? (2)

(the last equality in (2) follows from (1)). We readily get from (2) that a,d > 0.

In the sequel we will use only the relations (1) and (2), along with the fact that a, d, s
are positive integers, while b and ¢ are nonnegative integers, at most one of which may be
zero. Since both relations are symmetric with respect to the simultaneous swappings a < d
and b < ¢, we assume, without loss of generality, that b > ¢ (and hence b > 0). Therefore,
d?* = 25 + b? > %, whence
A+d> s

= —. 3

5 5 (3)

On the other hand, since d*> — b? is even by (2), the numbers b and d have the same parity,
so 0 < b < d— 2. Therefore,

d? >

2s=d*—b>d*—(d—2)2*=4(d—1), e, d<=+1. (4)

s
2
Combining (3) and (4) we obtain

2
252<4d2<4<§+1>, or  (s—2)?%<8,

which yields s < 4.

Finally, an easy check shows that each number of the form s with 1 < s < 4 has a unique
representation as a sum of two squares, namely s> = s? + 02, Thus, (1) along with a,d > 0
imply b = ¢ = 0, which is impossible.

Solution 2. We start with a complete description of all 4-tuples (z,y, 2, t) of positive integers
satisfying (). As in the solution above, we notice that the numbers

r+y z+1 r—y q z—t
5 5 p ) q 5

S =
2
are integers (we may, and will, assume that p, ¢ = 0). We have

2s =ay — 2t = (s +p)(s—p) — (s +¢)(s —q) = ¢ —p,

so p and ¢ have the same parity, and ¢ > p.



Shortlisted problems — solutions 65

Set now k = £, ¢ = ©2 Then we have s = q2;p2 = 2k¢ and hence

r=s5+p=2kl —k+¢, y=s—p=2kl+k—1/,

5
z2=5+q=2kl +k+¢, t=s—q=2kl —k—V/. (5)

Recall here that ¢ > k£ > 0 and, moreover, (k,¢) # (1, 1), since otherwise ¢ = 0.

Assume now that both xy and zt are squares. Then xyzt is also a square. On the other
hand, we have

xyzt = (2k0 — k + 0)(2kL + k — 0)(2k0 + k + 0)(2k( — k — 0)
= (4K*C° — (k — 0)*) (4k*C — (k + 0)*) = (4k*0* — k> — 0°)* — 4k*(*. (6)

Denote D = 4k*(* — k* — (> > (. From (6) we get D? > zyzt. On the other hand,

(D —1)* = D?* = 2(4K*0* — k* — (*) + 1 = (D* — 4k(*) — (2K* — 1)(20* — 1) + 2
= ayzt — (2k% — 1)(20° — 1) + 2 < wyzt,

since £ > 2 and k > 1. Thus (D —1)? < zyzt < D?, and zyzt cannot be a perfect square; a
contradiction.

Comment. The first part of Solution 2 shows that all 4-tuples of positive integers x > y, z > ¢
satisfying (%) have the form (5), where £ > k > 0 and ¢ > 2. The converse is also true: every pair
of positive integers ¢ > k > 0, except for the pair k = ¢ = 1, generates via (5) a 4-tuple of positive
integers satisfying (x).
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- Let f:{1,2,3,...} = {2,3,...} be a function such that f(m+mn) | f(m)+ f(n) for all
pairs m,n of positive integers. Prove that there exists a positive integer ¢ > 1 which divides
all values of f.

(Mezico)

Solution 1. For every positive integer m, define S,, = {n: m | f(n)}.

Lemma. If the set S, is infinite, then S,, = {d,2d,3d, ...} = d - Z~, for some positive integer d.

Proof. Let d = min S,,; the definition of S,, yields m | f(d).

Whenever n € S,, and n > d, we have m | f(n) | f(n —d) + f(d), so m | f(n —d) and
therefore n — d € S,,. Let r < d be the least positive integer with n = r (mod d); repeating
the same step, we can see that n — d,n — 2d,...,r € S,,. By the minimality of d, this shows
r = d and therefore d | n.

Starting from an arbitrarily large element of S,,, the process above reaches all multiples
of d; so they all are elements of .5,,,. ]

The solution for the problem will be split into two cases.

Case 1: The function f is bounded.

Call a prime p frequent if the set S, is infinite, i.e., if p divides f(n) for infinitely many
positive integers n; otherwise call p sporadic. Since the function f is bounded, there are only
a finite number of primes that divide at least one f(n); so altogether there are finitely many
numbers n such that f(n) has a sporadic prime divisor. Let N be a positive integer, greater
than all those numbers n.

Let pi,...,pr be the frequent primes. By the lemma we have S,, = d; - Z~ for some d;.
Consider the number

n = Ndldgdk+ 1.

Due to n > N, all prime divisors of f(n) are frequent primes. Let p; be any frequent prime
divisor of f(n). Then n € S,,, and therefore d; | n. But n =1 (mod d;), which means d; = 1.
Hence S,, = 1-Z-o = Z~( and therefore p; is a common divisor of all values f(n).

Case 2: f is unbounded.

We prove that f(1) divides all f(n).
Let a = f(1). Since 1 € S,, by the lemma it suffices to prove that S, is an infinite set.

Call a positive integer p a peak if f(p) > max(f(1),..., f(p —1)). Since f is not bounded,
there are infinitely many peaks. Let 1 = p; < ps < ... be the sequence of all peaks, and let
hi. = f(pr). Notice that for any peak p; and for any k < p;, we have f(p;) | f(k) + f(p;i — k) <
2f(p;), hence

f(k) + f(pi — k) = f(pi) = I (1)

By the pigeonhole principle, among the numbers hq, ho, ... there are infinitely many that

are congruent modulo a. Let ky < ki < ks < ... be an infinite sequence of positive integers
such that hg, = hg, = ... (mod a). Notice that

f(pki _pko) = f(pkz) - f(pko) = hkz - hk‘o =0 (mOd a’)v

SO D, — Pk, € Sg for all 2 = 1,2, .. .. This provides infinitely many elements in S,.
Hence, S, is an infinite set, and therefore f(1) = a divides f(n) for every n.

Comment. As an extension of the solution above, it can be proven that if f is not bounded then
f(n) = an with a = f(1).

Take an arbitrary positive integer n; we will show that f(n + 1) = f(n) + a. Then it follows by
induction that f(n) = an.



Shortlisted problems — solutions 67

Take a peak p such that p > n+ 2 and h = f(p) > f(n) + 2a. By (1) we have f(p — 1) =

flo)—f(1)=h—aand f(n+1)=f(p)— flp—n—1)=h—f(p—n—1). From h—a= f(p—1) |

fm)+flp—n—1) < f(n)+h <2(h—a)weget f(n)+ f(p—n—1) =h —a. Then
fn+1)=fn)=(h—fp-n-1) — (h—a—flp-n-1)) =a

On the other hand, there exists a wide family of bounded functions satisfying the required proper-
ties. Here we present a few examples:

2¢ if n is even _ ) 2018c¢ if n <2018

c if nis odd; (n) = c if n > 2018.
Solution 2. Let d, = ged(f(n), f(1)). From dni1 | f(1) and dyyq | f(n+1) | f(n) + f(1),
we can see that d,i1 | f(n); then dyy1 | ged(f(n), f(1)) = d,. So the sequence dy,ds, ...
is nonincreasing in the sense that every element is a divisor of the previous elements. Let
d = min(dy,ds,...) = ged(d; da, .. .) = gcd(f(l), f(2),.. .); we have to prove d > 2.

For the sake of contradiction, suppose that the statement is wrong, so d = 1; that means

there is some index ng such that d,, = 1 for every n > ng, i.e., f(n) is coprime with f(1).

Claim 1. If 28 > ng then f(2F) < 2%,

Proof. By the condition, f(2n) | 2f(n); a trivial induction yields f(2%) | 2% f(1). If 2% > ng then
f(2%) is coprime with f(1), so f(2*) is a divisor of 2. m
Claim 2. There is a constant C such that f(n) <n + C for every n.

Proof. Take the first power of 2 which is greater than or equal to ng: let K = 28 > ny. By
Claim 1, we have f(K) < K. Notice that f(n + K) | f(n) + f(K) implies f(n + K) <
f(n)+ f(K)< f(n)+ K. If n =tK + r for some t > 0 and 1 <r < K, then we conclude

fn) K K+ f(n—K)<2K+ f(n—2K)<...<tK+ f(r) < n+max(f(1),f(2),...,f(K)),
so the claim is true with C' = max(f(1),..., f(K)). ]

Claim 3. 1If a,b € Zq are coprime then ged(f(a), f(b)) | f(1). In particular, if a,b > ng are
coprime then f(a) and f(b) are coprime.
Proof. Let d = ged ( f(a), f (b)) We can replicate Euclid’s algorithm. Formally, apply induction
ona-+b Ifa=1orb=1 then we already have d | f(1).

Without loss of generality, suppose 1 < a < b. Then d | f(a) and d | f(b) | f(a) + f(b— a),
sod | f(b—a). Therefore d divides ged(f(a), f(b—a)) which is a divisor of f(1) by the induction

hypothesis. L]

Let p1 < po < ... be the sequence of all prime numbers; for every k, let ¢, be the lowest
power of p with g, = ng. (Notice that there are only finitely many positive integers with
Q. # Dk-)

Take a positive integer N, and consider the numbers

f(l)af((h)af(qZ)a . '7f(QN)'

Here we have N + 1 numbers, each being greater than 1, and they are pairwise coprime by
Claim 3. Therefore, they have at least N + 1 different prime divisors in total, and their greatest
prime divisor is at least py.1. Hence, max(f(1), f(q¢1),--., f(gn)) = PNy1-

Choose N such that max(qi,...,qn) = py (this is achieved if N is sufficiently large), and
pni1 — py > C (that is possible, because there are arbitrarily long gaps between the primes).
Then we establish a contradiction

PN+1 <max<f(1)7f(q1)77f<q1\7)) <maX(1+C7q1+C77QN+C) :pN+C<pN+1

which proves the statement.
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- Let n > 2018 be an integer, and let aq,as,...,a,,by,bs, ..., b, be pairwise distinct
positive integers not exceeding 5n. Suppose that the sequence
a; ag Qn

b_l, b_2,..., bn

forms an arithmetic progression. Prove that the terms of the sequence are equal.

(1)

(Thailand)

Solution. Suppose that (1) is an arithmetic progression with nonzero difference. Let the
difference be A = £, where d > 0 and ¢, d are coprime.

We will show that too many denominators b; should be divisible by d. To this end, for any
1 <i < n and any prime divisor p of d, say that the indez i is p-wrong, if v,(b;) < v,(d). (v,(x)
stands for the exponent of p in the prime factorisation of x.)

Claim 1. For any prime p, all p-wrong indices are congruent modulo p. In other words, the
p-wrong indices (if they exist) are included in an arithmetic progression with difference p.

Proof. Let o« = v,(d). For the sake of contradiction, suppose that i and j are p-wrong indices

(i.e., none of b; and b; is divisible by p®) such that ¢ # j (mod p). Then the least common

denominator of #* and ’;—J is not divisible by p®. But this is impossible because in their difference,
i j

(i—j)c

(i — j)A = ==, the numerator is coprime to p, but p* divides the denominator d. ]

Claim 2. d has no prime divisors greater than 5.

Proof. Suppose that p > 7 is a prime divisor of d. Among the indices 1,2,...,n, at most
[%] < % + 1 are p-wrong, so p divides at least ’%ln —1of by,...,b,. Since these denominators

are distinct,

-1
5n > max{b; : p|b} > (p n—l)pz p—1)(n—1)—1=26(n—1)—1>bn,
a contradiction. O
Claim 3. For every 0 < k < n — 30, among the denominators by, 1, b2, ..., bri30, at least

©(30) = 8 are divisible by d.

Proof. By Claim 1, the 2-wrong, 3-wrong and 5-wrong indices can be covered by three arithmetic
progressions with differences 2, 3 and 5. By a simple inclusion-exclusion, (2—1)-(3—1)-(5—1) = 8
indices are not covered; by Claim 2, we have d | b; for every uncovered index i. ]
Claim 4. |A] <25 and d > %22

Proof. From the sequence (1), remove all fractions with b, < %, There remain at least

fractions, and they cannot exceed 2—72 = 10. So we have at least 7 elements of the arithmeti

progression (1) in the interval (0, 10], hence the difference must be below n/12(11 =2

The second inequality follows from % < %‘ = |Al. 0

|3

o

Now we have everything to get the final contradiction. By Claim 3, we have d | b; for at

least [%J -8 indices i. By Claim 4, we have d > "2—_02. Therefore,
n n n—2
> podlby= (|55 8) d> (55 -1) -8 .
5n > max{bi: d| b} > (|55]8)-d> (55 8- 1 > bn

Comment 1. Tt is possible that all terms in (1) are equal, for example with a; = 2i—1 and b; = 4i—2
we have 3 = %

Comment 2. The bound 5n in the statement is far from sharp; the solution above can be modified
to work for 9n. For large n, the bound 5n can be replaced by n27°.
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