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Problems

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1.

A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C.

A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1.

A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
for all positive real numbers x and y.

A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}

for all real numbers x and y.

A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.
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C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA.

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .
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G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)).

N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and all squares of its side lengths are
divisible by n. Prove that 2S is an integer divisible by n.

N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.
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Solutions

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1. (1)

Solution 1. We first show the following.

• Claim. For any positive real numbers x, y with xy > 1, we have

(x2 + 1)(y2 + 1) 6
ÇÅx+ y

2

ã2
+ 1

å2

. (2)

Proof. Note that xy > 1 implies (x+y
2

)2 − 1 > xy − 1 > 0. We find that

(x2 + 1)(y2 + 1) = (xy − 1)2 + (x+ y)2 6
ÇÅx+ y

2

ã2
− 1

å2

+ (x+ y)2 =

ÇÅx+ y

2

ã2
+ 1

å2

.

Without loss of generality, assume a > b > c. This implies a > 1. Let d = a+b+c
3

. Note
that

ad =
a(a+ b+ c)

3
>

1 + 1 + 1

3
= 1.

Then we can apply (2) to the pair (a, d) and the pair (b, c). We get

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ d

2

å2

+ 1

)2 (Ç
b+ c

2

å2

+ 1

)2

. (3)

Next, from
a+ d

2
· b+ c

2
>
√
ad ·
√
bc > 1,

we can apply (2) again to the pair (a+d
2
, b+c

2
). Together with (3), we have

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ b+ c+ d

4

å2

+ 1

)4

= (d2 + 1)4.

Therefore, (a2 + 1)(b2 + 1)(c2 + 1) 6 (d2 + 1)3, and (1) follows by taking cube root of both
sides.
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Comment. After justifying the Claim, one may also obtain (1) by mixing variables. Indeed,
the function involved is clearly continuous, and hence it suffices to check that the condition
xy > 1 is preserved under each mixing step. This is true since whenever ab, bc, ca > 1, we
have

a+ b

2
· a+ b

2
> ab > 1 and

a+ b

2
· c > 1 + 1

2
= 1.

Solution 2. Let f(x) = ln (1 + x2). Then the inequality (1) to be shown is equivalent to

f(a) + f(b) + f(c)

3
6 f

Ç
a+ b+ c

3

å
,

while (2) becomes
f(x) + f(y)

2
6 f

Åx+ y

2

ã
for xy > 1.

Without loss of generality, assume a > b > c. From the Claim in Solution 1, we have

f(a) + f(b) + f(c)

3
6
f(a) + 2f( b+c

2
)

3
.

Note that a > 1 and b+c
2

>
√
bc > 1. Since

f ′′(x) =
2(1− x2)
(1 + x2)2

,

we know that f is concave on [1,∞). Then we can apply Jensen’s Theorem to get

f(a) + 2f( b+c
2

)

3
6 f

(
a+ 2 · b+c

2

3

)
= f

Ç
a+ b+ c

3

å
.

This completes the proof.
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A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C. (1)

Answer. The smallest C is 1
2
.

Solution. We first show that C 6 1
2
. For any positive real numbers a1 6 a2 6 a3 6 a4 6 a5,

consider the five fractions
a1
a2
,
a3
a4
,
a1
a5
,
a2
a3
,
a4
a5
. (2)

Each of them lies in the interval (0, 1]. Therefore, by the Pigeonhole Principle, at least three
of them must lie in (0, 1

2
] or lie in (1

2
, 1] simultaneously. In particular, there must be two

consecutive terms in (2) which belong to an interval of length 1
2

(here, we regard a1
a2

and a4
a5

as consecutive). In other words, the difference of these two fractions is less than 1
2
. As the

indices involved in these two fractions are distinct, we can choose them to be i, j, k, l and
conclude that C 6 1

2
.

Next, we show that C = 1
2

is best possible. Consider the numbers 1, 2, 2, 2, n where n is
a large real number. The fractions formed by two of these numbers in ascending order are
1
n
, 2
n
, 1
2
, 2
2
, 2
1
, n
2
, n
1
. Since the indices i, j, k, l are distinct, 1

n
and 2

n
cannot be chosen simultane-

ously. Therefore the minimum value of the left-hand side of (1) is 1
2
− 2

n
. When n tends to

infinity, this value approaches 1
2
, and so C cannot be less than 1

2
.

These conclude that C = 1
2

is the smallest possible choice.

Comment. The conclusion still holds if a1, a2, . . . , a5 are pairwise distinct, since in the con-
struction, we may replace the 2’s by real numbers sufficiently close to 2.

There are two possible simplifications for this problem:

(i) the answer C = 1
2

is given to the contestants; or

(ii) simply ask the contestants to prove the inequality (1) for C = 1
2
.
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A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1. (1)

Answer. n can be any odd integer greater than or equal to 3.

Solution 1. For any even integer n > 4, we consider the case

a1 = a2 = · · · = an−1 = bn = 0 and b1 = b2 = · · · = bn−1 = an = 1.

The condition |ak| + |bk| = 1 is satisfied for each 1 6 k 6 n. No matter how we choose each
xk, both sums

∑n
k=1 xkak and

∑n
k=1 xkbk are odd integers. This implies |∑n

k=1 xkak| > 1 and
|∑n

k=1 xkbk| > 1, which shows (1) cannot hold.
For any odd integer n > 3, we may assume without loss of generality bk > 0 for 1 6 k 6 n

(this can be done by flipping the pair (ak, bk) to (−ak,−bk) and xk to −xk if necessary) and
a1 > a2 > · · · > am > 0 > am+1 > · · · > an. We claim that the choice xk = (−1)k+1 for
1 6 k 6 n will work. Define

s =
m∑
k=1

xkak and t = −
n∑

k=m+1

xkak.

Note that
s = (a1 − a2) + (a3 − a4) + · · · > 0

by the assumption a1 > a2 > · · · > am (when m is odd, there is a single term am at the end,
which is also positive). Next, we have

s = a1 − (a2 − a3)− (a4 − a5)− · · · 6 a1 6 1.

Similarly,
t = (−an + an−1) + (−an−2 + an−3) + · · · > 0

and
t = −an + (an−1 − an−2) + (an−3 − an−4) + · · · 6 −an 6 1.

From the condition, we have ak+bk = 1 for 1 6 k 6 m and −ak+bk = 1 for m+1 6 k 6 n.
It follows that

∑n
k=1 xkak = s− t and

∑n
k=1 xkbk = 1− s− t. Hence it remains to prove

|s− t|+ |1− s− t| 6 1

under the constraint 0 6 s, t 6 1. By symmetry, we may assume s > t. If 1− s− t > 0, then
we have

|s− t|+ |1− s− t| = s− t+ 1− s− t = 1− 2t 6 1.

If 1− s− t 6 0, then we have

|s− t|+ |1− s− t| = s− t− 1 + s+ t = 2s− 1 6 1.

Hence, the inequality is true in both cases.
These show n can be any odd integer greater than or equal to 3.
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Solution 2. The even case can be handled in the same way as Solution 1. For the odd case,
we prove by induction on n.

Firstly, for n = 3, we may assume without loss of generality a1 > a2 > a3 > 0 and
b1 = a1 − 1 (if b1 = 1− a1, we may replace each bk by −bk).

• Case 1. b2 = a2 − 1 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Then |b1 − b2 + b3| = |a1 − a2 + a3 − 1| = 1 − c

and hence |c|+ |b1 − b2 + b3| = 1.

• Case 2. b2 = 1− a2 and b3 = 1− a3, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Since a3 6 a2 and a1 6 1, we have

c− 1 6 b1 − b2 + b3 = a1 + a2 − a3 − 1 6 1− c.

This gives |b1 − b2 + b3| 6 1− c and hence |c|+ |b1 − b2 + b3| 6 1.

• Case 3. b2 = a2 − 1 and b3 = 1− a3, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a3 6 1 and a2 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1− c.

If c < 0, then a1 6 a2 + 1 and a3 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

• Case 4. b2 = 1− a2 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a2 6 1 and a3 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1− c.

If c < 0, then a1 6 a3 + 1 and a2 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

We have found x1, x2, x3 satisfying (1) in each case for n = 3.
Now, let n > 5 be odd and suppose the result holds for any smaller odd cases. Again

we may assume ak > 0 for each 1 6 k 6 n. By the Pigeonhole Principle, there are at least
three indices k for which bk = ak − 1 or bk = 1 − ak. Without loss of generality, suppose
bk = ak − 1 for k = 1, 2, 3. Again by the Pigeonhole Principle, as a1, a2, a3 lies between 0
and 1, the difference of two of them is at most 1

2
. By changing indices if necessary, we may

assume 0 6 d = a1 − a2 6 1
2
.

By the inductive hypothesis, we can choose x3, x4, . . . , xn such that a′ =
∑n
k=3 xkak and

b′ =
∑n
k=3 xkbk satisfy |a′|+ |b′| 6 1. We may further assume a′ > 0.
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• Case 1. b′ > 0, in which case we take (x1, x2) = (−1, 1).
We have | − a1 + a2 + a′| + | − (a1 − 1) + (a2 − 1) + b′| = | − d + a′| + | − d + b′| 6

max {a′ + b′ − 2d, a′ − b′, b′ − a′, 2d− a′ − b′} 6 1 since 0 6 a′, b′, a′ + b′ 6 1 and 0 6 d 6 1
2
.

• Case 2. 0 > b′ > −a′, in which case we take (x1, x2) = (−1, 1).
We have |−a1 +a2 +a′|+ |− (a1−1)+(a2−1)+b′| = |−d+a′|+ |−d+b′|. If −d+a′ > 0,

this equals a′ − b′ = |a′|+ |b′| 6 1. If −d+ a′ < 0, this equals 2d− a′ − b′ 6 2d 6 1.

• Case 3. b′ < −a′, in which case we take (x1, x2) = (1,−1).
We have |a1 − a2 + a′| + |(a1 − 1)− (a2 − 1) + b′| = |d + a′| + |d + b′|. If d + b′ > 0, this

equals 2d+ a′ + b′ < 2d 6 1. If d+ b′ < 0, this equals a′ − b′ = |a′|+ |b′| 6 1.

Therefore, we have found x1, x2, . . . , xn satisfying (1) in each case. By induction, the
property holds for all odd integers n > 3.
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A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
(1)

for all positive real numbers x and y.

Answer. f(x) = 1
x

for any x ∈ R+.

Solution 1. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Swapping x and y in (1) and comparing with (1) again, we find

xf(x2)f(f(y)) + f(yf(x)) = yf(y2)f(f(x)) + f(xf(y)). (2)

Taking y = 1 in (2), we have xf(x2) + f(f(x)) = f(f(x)) + f(x), that is,

f(x2) =
f(x)

x
. (3)

Take y = 1 in (1) and apply (3) to xf(x2). We get f(x) + f(f(x)) = f(x)(f(f(x2)) + 1),
which implies

f(f(x2)) =
f(f(x))

f(x)
. (4)

For any x ∈ R+, we find that

f(f(x)2)
(3)
=
f(f(x))

f(x)

(4)
= f(f(x2))

(3)
= f

Ç
f(x)

x

å
. (5)

It remains to show the following key step.

• Claim. The function f is injective.

Proof. Using (3) and (4), we rewrite (1) as

f(x)f(f(y)) + f(yf(x)) = f(xy)

Ç
f(f(x))

f(x)
+
f(f(y))

f(y)

å
. (6)

Take x = y in (6) and apply (3). This gives f(x)f(f(x)) + f(xf(x)) = 2f(f(x))
x

, which means

f(xf(x)) = f(f(x))

Ç
2

x
− f(x)

å
. (7)

Using (3), equation (2) can be rewritten as

f(x)f(f(y)) + f(yf(x)) = f(y)f(f(x)) + f(xf(y)). (8)

Suppose f(x) = f(y) for some x, y ∈ R+. Then (8) implies

f(yf(y)) = f(yf(x)) = f(xf(y)) = f(xf(x)).

Using (7), this gives

f(f(y))

Ç
2

y
− f(y)

å
= f(f(x))

Ç
2

x
− f(x)

å
.

Noting f(x) = f(y), we find x = y. This establishes the injectivity.
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By the Claim and (5), we get the only possible solution f(x) = 1
x
. It suffices to check that

this is a solution. Indeed, the left-hand side of (1) becomes

x · 1

x2
· y +

x

y
=
y

x
+
x

y
,

while the right-hand side becomes

1

xy
(x2 + y2) =

x

y
+
y

x
.

The two sides agree with each other.

Solution 2. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Putting x = 1 in (1), we have f(f(y)) + f(y) = f(y)(1 + f(f(y2))) so that

f(f(y)) = f(y)f(f(y2)). (9)

Putting y = 1 in (1), we get xf(x2) + f(f(x)) = f(x)(f(f(x2)) + 1). Using (9), this gives

xf(x2) = f(x). (10)

Replace y by 1
x

in (1). Then we have

xf(x2)f

Ç
f

Ç
1

x

åå
+ f

Ç
f(x)

x

å
= f(f(x2)) + f

Ç
f

Ç
1

x2

åå
.

The relation (10) shows f(f(x)
x

) = f(f(x2)). Also, using (9) with y = 1
x

and using (10) again,
the last equation reduces to

f(x)f

Ç
1

x

å
= 1. (11)

Replace x by 1
x

and y by 1
y

in (1) and apply (11). We get

1

xf(x2)f(f(y))
+

1

f(yf(x))
=

1

f(xy)

Ç
1

f(f(x2))
+

1

f(f(y2))

å
.

Clearing denominators, we can use (1) to simplify the numerators and obtain

f(xy)2f(f(x2))f(f(y2)) = xf(x2)f(f(y))f(yf(x)).

Using (9) and (10), this is the same as

f(xy)2f(f(x)) = f(x)2f(y)f(yf(x)). (12)

Substitute y = f(x) in (12) and apply (10) (with x replaced by f(x)). We have

f(xf(x))2 = f(x)f(f(x)). (13)

Taking y = x in (12), squaring both sides, and using (10) and (13), we find that

f(f(x)) = x4f(x)3. (14)

Finally, we combine (9), (10) and (14) to get

y4f(y)3
(14)
= f(f(y))

(9)
= f(y)f(f(y2))

(14)
= f(y)y8f(y2)3

(10)
= y5f(y)4,

which implies f(y) = 1
y
. This is a solution by the checking in Solution 1.
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A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.

Solution.

(a) Let r be the unique positive integer for which r2 6 n < (r+ 1)2. Write n = r2 + s. Then
we have 0 6 s 6 2r. We discuss in two cases according to the parity of s.

• Case 1. s is even.

Consider the number (r + s
2r

)2 = r2 + s+ ( s
2r

)2. We find that

n = r2 + s 6 r2 + s+
Å s

2r

ã2
6 r2 + s+ 1 = n+ 1.

It follows that √
n 6 r +

s

2r
6
√
n+ 1.

Since s is even, we can choose the fraction r + s
2r

= r2+(s/2)
r

since r 6
√
n.

• Case 2. s is odd.

Consider the number (r+ 1− 2r+1−s
2(r+1)

)2 = (r+ 1)2− (2r+ 1− s) + (2r+1−s
2(r+1)

)2. We find that

n = r2 + s = (r + 1)2 − (2r + 1− s) 6 (r + 1)2 − (2r + 1− s) +

Ç
2r + 1− s
2(r + 1)

å2

6 (r + 1)2 − (2r + 1− s) + 1 = n+ 1.

It follows that √
n 6 r + 1− 2r + 1− s

2(r + 1)
6
√
n+ 1.

Since s is odd, we can choose the fraction (r + 1) − 2r+1−s
2(r+1)

= (r+1)2−r+((s−1)/2)
r+1

since

r + 1 6
√
n+ 1.

(b) We show that for every positive integer r, there is no fraction a
b

with b 6
√
r2 + 1 such

that
√
r2 + 1 6 a

b
6
√
r2 + 2. Suppose on the contrary that such a fraction exists. Since

b 6
√
r2 + 1 < r + 1 and b is an integer, we have b 6 r. Hence,

(br)2 < b2(r2 + 1) 6 a2 6 b2(r2 + 2) 6 b2r2 + 2br < (br + 1)2.

This shows the square number a2 is strictly bounded between the two consecutive squares
(br)2 and (br+ 1)2, which is impossible. Hence, we have found infinitely many n = r2 + 1
for which there is no fraction of the desired form.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

Answer. 2016.

Solution. Since there are 2016 common linear factors on both sides, we need to erase at least
2016 factors. We claim that the equation has no real roots if we erase all factors (x− k) on
the left-hand side with k ≡ 2, 3 (mod 4), and all factors (x−m) on the right-hand side with
m ≡ 0, 1 (mod 4). Therefore, it suffices to show that no real number x satisfies

503∏
j=0

(x− 4j − 1)(x− 4j − 4) =
503∏
j=0

(x− 4j − 2)(x− 4j − 3). (1)

• Case 1. x = 1, 2, . . . , 2016.
In this case, one side of (1) is zero while the other side is not. This shows x cannot satisfy

(1).

• Case 2. 4k + 1 < x < 4k + 2 or 4k + 3 < x < 4k + 4 for some k = 0, 1, . . . , 503.
For j = 0, 1, . . . , 503 with j 6= k, the product (x − 4j − 1)(x − 4j − 4) is positive. For

j = k, the product (x− 4k − 1)(x− 4k − 4) is negative. This shows the left-hand side of (1)
is negative. On the other hand, each product (x− 4j − 2)(x− 4j − 3) on the right-hand side
of (1) is positive. This yields a contradiction.

• Case 3. x < 1 or x > 2016 or 4k < x < 4k + 1 for some k = 1, 2, . . . , 503.
The equation (1) can be rewritten as

1 =
503∏
j=0

(x− 4j − 1)(x− 4j − 4)

(x− 4j − 2)(x− 4j − 3)
=

503∏
j=0

Ç
1− 2

(x− 4j − 2)(x− 4j − 3)

å
.

Note that (x − 4j − 2)(x − 4j − 3) > 2 for 0 6 j 6 503 in this case. So each term in the
product lies strictly between 0 and 1, and the whole product must be less than 1, which is
impossible.

• Case 4. 4k + 2 < x < 4k + 3 for some k = 0, 1, . . . , 503.
This time we rewrite (1) as

1 =
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

(x− 4j)(x− 4j − 1)

(x− 4j + 1)(x− 4j − 2)

=
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

Ç
1 +

2

(x− 4j + 1)(x− 4j − 2)

å
.

Clearly, x−1
x−2 and x−2016

x−2015 are both greater than 1. For the range of x in this case, each term
in the product is also greater than 1. Then the right-hand side must be greater than 1 and
hence a contradiction arises.
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From the four cases, we conclude that (1) has no real roots. Hence, the minimum number
of linear factors to be erased is 2016.

Comment. We discuss the general case when 2016 is replaced by a positive integer n. The
above solution works equally well when n is divisible by 4.

If n ≡ 2 (mod 4), one may leave l(x) = (x − 1)(x − 2) · · · (x − n
2
) on the left-hand side

and r(x) = (x − n
2
− 1)(x − n

2
− 2) · · · (x − n) on the right-hand side. One checks that for

x < n+1
2

, we have |l(x)| < |r(x)|, while for x > n+1
2

, we have |l(x)| > |r(x)|.
If n ≡ 3 (mod 4), one may leave l(x) = (x− 1)(x− 2) · · · (x− n+1

2
) on the left-hand side

and r(x) = (x− n+3
2

)(x− x+5
2

) · · · (x−n) on the right-hand side. For x < 1 or n+1
2
< x < n+3

2
,

we have l(x) > 0 > r(x). For 1 < x < n+1
2

, we have |l(x)| < |r(x)|. For x > n+3
2

, we have
|l(x)| > |r(x)|.

If n ≡ 1 (mod 4), as the proposer mentioned, the situation is a bit more out of control.
Since the construction for n− 1 ≡ 0 (mod 4) works, the answer can be either n or n− 1. For
n = 5, we can leave the products (x − 1)(x − 2)(x − 3)(x − 4) and (x − 5). For n = 9, the
only example that works is l(x) = (x− 1)(x− 2)(x− 9) and r(x) = (x− 3)(x− 4) · · · (x− 8),
while there seems to be no such partition for n = 13.
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A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)} (1)

for all real numbers x and y.

Answer.

• f(x) = −1 for any x ∈ R; or

• f(x) = x− 1 for any x ∈ R.

Solution 1. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have f(x)2 = −2f(x) + f(x2), which is the same as
(f(x) + 1)2 = f(x2) + 1. Let g(x) = f(x) + 1. Then for any x ∈ R, we have

g(x2) = g(x)2 > 0. (2)

From (1), we find that f(x+ y)2 > 2f(x)f(y) + f(x2) + f(y2). In terms of g, this becomes
(g(x+ y)− 1)2 > 2(g(x)− 1)(g(y)− 1) + g(x2) + g(y2)− 2. Using (2), this means

(g(x+ y)− 1)2 > (g(x) + g(y)− 1)2 − 1. (3)

Putting x = 1 in (2), we get g(1) = 0 or 1. The two cases are handled separately.

• Case 1. g(1) = 0, which is the same as f(1) = −1.
We put x = −1 and y = 0 in (1). This gives f(−1)2 = −2f(−1) − 1, which forces

f(−1) = −1. Next, we take x = −1 and y = 1 in (1) to get 1 = 2 + max {−2, f(2)}. This
clearly implies 1 = 2 + f(2) and hence f(2) = −1, that is, g(2) = 0. From (2), we can prove
inductively that g(22n) = g(2)2

n
= 0 for any n ∈ N. Substitute y = 22n − x in (3). We obtain

(g(x) + g(22n − x)− 1)2 6 (g(22n)− 1)2 + 1 = 2.

For any fixed x > 0, we consider n to be sufficiently large so that 22n − x > 0. From (2), this
implies g(22n − x) > 0 so that g(x) 6 1 +

√
2. Using (2) again, we get

g(x)2
n

= g(x2
n

) 6 1 +
√

2

for any n ∈ N. Therefore, |g(x)| 6 1 for any x > 0.
If there exists a ∈ R for which g(a) 6= 0, then for sufficiently large n we must have

g((a2)
1
2n ) = g(a2)

1
2n > 1

2
. By taking x = −y = −(a2)

1
2n in (1), we obtain

1 = 2f(x)f(−x) + max {2f(x2), f(2x2)}
= 2(g(x)− 1)(g(−x)− 1) + max {2(g(x2)− 1), g(2x2)− 1}

6 2

Ç
−1

2

åÇ
−1

2

å
+ 0 =

1

2

since |g(−x)| = |g(x)| ∈ (1
2
, 1] by (2) and the choice of x, and since g(z) 6 1 for z > 0. This

yields a contradiction and hence g(x) = 0 must hold for any x. This means f(x) = −1 for
any x ∈ R, which clearly satisfies (1).
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• Case 2. g(1) = 1, which is the same as f(1) = 0.
We put x = −1 and y = 1 in (1) to get 1 = max {0, f(2)}. This clearly implies f(2) = 1

and hence g(2) = 2. Setting x = 2n and y = 2 in (3), we have

(g(2n+ 2)− 1)2 > (g(2n) + 1)2 − 1.

By induction on n, it is easy to prove that g(2n) > n + 1 for all n ∈ N. For any real
number a > 1, we choose a large n ∈ N and take k to be the positive integer such that
2k 6 a2

n
< 2k + 2. From (2) and (3), we have

(g(a)2
n − 1)2 + 1 = (g(a2

n

)− 1)2 + 1 > (g(2k) + g(a2
n − 2k)− 1)2 > k2 >

1

4
(a2

n − 2)2

since g(a2
n − 2k) > 0. For large n, this clearly implies g(a)2

n
> 1. Thus,

(g(a)2
n

)2 > (g(a)2
n − 1)2 + 1 >

1

4
(a2

n − 2)2.

This yields

g(a)2
n

>
1

2
(a2

n − 2). (4)

Note that
a2

n

a2n − 2
= 1 +

2

a2n − 2
6
Ç

1 +
2

2n(a2n − 2)

å2n

by binomial expansion. This can be rewritten as

(a2
n − 2)

1
2n >

a

1 + 2
2n(a2n−2)

.

Together with (4), we conclude g(a) > a by taking n sufficiently large.
Consider x = na and y = a > 1 in (3). This gives (g((n+1)a)−1)2 > (g(na)+g(a)−1)2−1.

By induction on n, it is easy to show g(na) > (n− 1)(g(a)− 1) + a for any n ∈ N. We choose
a large n ∈ N and take k to be the positive integer such that ka 6 22n < (k + 1)a. Using (2)
and (3), we have

22n+1

> (22n−1)2+1 = (g(22n)−1)2+1 > (g(22n−ka)+g(ka)−1)2 > ((k−1)(g(a)−1)+a−1)2,

from which it follows that

22n > (k − 1)(g(a)− 1) + a− 1 >
22n

a
(g(a)− 1)− 2(g(a)− 1) + a− 1

holds for sufficiently large n. Hence, we must have g(a)−1
a

6 1, which implies g(a) 6 a+ 1 for
any a > 1. Then for large n ∈ N, from (3) and (2) we have

4a2
n+1

= (2a2
n

)2 > (g(2a2
n

)− 1)2 > (2g(a2
n

)− 1)2 − 1 = (2g(a)2
n − 1)2 − 1.
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This implies

2a2
n

>
1

2
(1 +

»
4a2n+1 + 1) > g(a)2

n

.

When n tends to infinity, this forces g(a) 6 a. Together with g(a) > a, we get g(a) = a for
all real numbers a > 1, that is, f(a) = a− 1 for all a > 1.

Finally, for any x ∈ R, we choose y sufficiently large in (1) so that y, x+ y > 1. This gives
(x+ y − 1)2 = 2f(x)(y − 1) + max {f(x2) + y2 − 1, x2 + y2 − 1}, which can be rewritten as

2(x− 1− f(x))y = −x2 + 2x− 2− 2f(x) + max {f(x2), x2}.

As the right-hand side is fixed, this can only hold for all large y when f(x) = x− 1. We now
check that this function satisfies (1). Indeed, we have

f(x+ y)2 = (x+ y − 1)2 = 2(x− 1)(y − 1) + (x2 + y2 − 1)

= 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}.

Solution 2. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have

f(x)2 = −2f(x) + f(x2). (5)

Replace x by −x in (5) and compare with (5) again. We get f(x)2+2f(x) = f(−x)2+2f(−x),
which implies

f(x) = f(−x) or f(x) + f(−x) = −2. (6)

Taking x = y and x = −y respectively in (1) and comparing the two equations obtained,
we have

f(2x)2 − 2f(x)2 = 1− 2f(x)f(−x). (7)

Combining (6) and (7) to eliminate f(−x), we find that f(2x) can be±1 (when f(x) = f(−x))
or ±(2f(x) + 1) (when f(x) + f(−x) = −2).

We prove the following.

• Claim. f(x) + f(−x) = −2 for any x ∈ R.

Proof. Suppose there exists a ∈ R such that f(a) + f(−a) 6= −2. Then f(a) = f(−a) 6= −1
and we may assume a > 0. We first show that f(a) 6= 1. Suppose f(a) = 1. Consider y = a
in (7). We get f(2a)2 = 1. Taking x = y = a in (1), we have 1 = 2 + max {2f(a2), f(2a2)}.
From (5), f(a2) = 3 so that 1 > 2 + 6. This is impossible, and thus f(a) 6= 1.

As f(a) 6= ±1, we have f(a) = ±(2f(a
2
) + 1). Similarly, f(−a) = ±(2f(−a

2
) + 1). These

two expressions are equal since f(a) = f(−a). If f(a
2
) = f(−a

2
), then the above argument

works when we replace a by a
2
. In particular, we have f(a)2 = f(2 · a

2
)2 = 1, which is a

contradiction. Therefore, (6) forces f(a
2
) + f(−a

2
) = −2. Then we get

±
Å

2f
Åa

2

ã
+ 1
ã

= ±
Å
−2f

Åa
2

ã
− 3
ã
.
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For any choices of the two signs, we either get a contradiction or f(a
2
) = −1, in which case

f(a
2
) = f(−a

2
) and hence f(a) = ±1 again. Therefore, there is no such real number a and the

Claim follows.

Replace x and y by −x and −y in (1) respectively and compare with (1). We get

f(x+ y)2 − 2f(x)f(y) = f(−x− y)2 − 2f(−x)f(−y).

Using the Claim, this simplifies to f(x+y) = f(x)+f(y)+1. In addition, (5) can be rewritten
as (f(x) + 1)2 = f(x2) + 1. Therefore, the function g defined by g(x) = f(x) + 1 satisfies
g(x + y) = g(x) + g(y) and g(x)2 = g(x2). The latter relation shows g(y) is nonnegative for
y > 0. For such a function satisfying the Cauchy Equation g(x + y) = g(x) + g(y), it must
be monotonic increasing and hence g(x) = cx for some constant c.

From (cx)2 = g(x)2 = g(x2) = cx2, we get c = 0 or 1, which corresponds to the two
functions f(x) = −1 and f(x) = x − 1 respectively, both of which are solutions to (1) as
checked in Solution 1.

Solution 3. As in Solution 2, we find that f(0) = −1,

(f(x) + 1)2 = f(x2) + 1 (8)

and
f(x) = f(−x) or f(x) + f(−x) = −2 (9)

for any x ∈ R. We shall show that one of the statements in (9) holds for all x ∈ R. Suppose
f(a) = f(−a) but f(a) + f(−a) 6= −2, while f(b) 6= f(−b) but f(b) + f(−b) = −2. Clearly,
a, b 6= 0 and f(a), f(b) 6= −1.

Taking y = a and y = −a in (1) respectively and comparing the two equations obtained,
we have f(x+a)2 = f(x−a)2, that is, f(x+a) = ±f(x−a). This implies f(x+2a) = ±f(x)
for all x ∈ R. Putting x = b and x = −2a − b respectively, we find f(2a + b) = ±f(b)
and f(−2a − b) = ±f(−b) = ±(−2 − f(b)). Since f(b) 6= −1, the term ±(−2 − f(b)) is
distinct from ±f(b) in any case. So f(2a + b) 6= f(−2a − b). From (9), we must have
f(2a+ b) +f(−2a− b) = −2. Note that we also have f(b) +f(−b) = −2 where |f(b)|, |f(−b)|
are equal to |f(2a+ b)|, |f(−2a− b)| respectively. The only possible case is f(2a+ b) = f(b)
and f(−2a− b) = f(−b).

Applying the argument to −a instead of a and using induction, we have f(2ka+ b) = f(b)
and f(2ka − b) = f(−b) for any integer k. Note that f(b) + f(−b) = −2 and f(b) 6= −1
imply one of f(b), f(−b) is less than −1. Without loss of generality, assume f(b) < −1. We
consider x =

√
2ka+ b in (8) for sufficiently large k so that

(f(x) + 1)2 = f(2ka+ b) + 1 = f(b) + 1 < 0

yields a contradiction. Therefore, one of the statements in (9) must hold for all x ∈ R.
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• Case 1. f(x) = f(−x) for any x ∈ R.
For any a ∈ R, setting x = y = a

2
and x = −y = a

2
in (1) respectively and comparing

these, we obtain f(a)2 = f(0)2 = 1, which means f(a) = ±1 for all a ∈ R. If f(a) = 1 for
some a, we may assume a > 0 since f(a) = f(−a). Taking x = y =

√
a in (1), we get

f(2
√
a)2 = 2f(

√
a)2 + max {2, f(2a)} = 2f(

√
a)2 + 2.

Note that the left-hand side is ±1 while the right-hand side is an even integer. This is a
contradiction. Therefore, f(x) = −1 for all x ∈ R, which is clearly a solution.

• Case 2. f(x) + f(−x) = −2 for any x ∈ R.
This case can be handled in the same way as in Solution 2, which yields another solution

f(x) = x− 1.
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A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
. (1)

Answer. The largest a is 4
9
.

Solution 1. We first show that a = 4
9

is admissible. For each 2 6 k 6 n, by the Cauchy-
Schwarz Inequality, we have

(xk−1 + (xk − xk−1))
Ç

(k − 1)2

xk−1
+

32

xk − xk−1

å
> (k − 1 + 3)2,

which can be rewritten as

9

xk − xk−1
>

(k + 2)2

xk
− (k − 1)2

xk−1
. (2)

Summing (2) over k = 2, 3, . . . , n and adding 9
x1

to both sides, we have

9
n∑
k=1

1

xk − xk−1
> 4

n∑
k=1

k + 1

xk
+
n2

xn
> 4

n∑
k=1

k + 1

xk
.

This shows (1) holds for a = 4
9
.

Next, we show that a = 4
9

is the optimal choice. Consider the sequence defined by x0 = 0
and xk = xk−1 + k(k + 1) for k > 1, that is, xk = 1

3
k(k + 1)(k + 2). Then the left-hand side

of (1) equals
n∑
k=1

1

k(k + 1)
=

n∑
k=1

Ç
1

k
− 1

k + 1

å
= 1− 1

n+ 1
,

while the right-hand side equals

a
n∑
k=1

k + 1

xk
= 3a

n∑
k=1

1

k(k + 2)
=

3

2
a

n∑
k=1

Ç
1

k
− 1

k + 2

å
=

3

2

Ç
1 +

1

2
− 1

n+ 1
− 1

n+ 2

å
a.

When n tends to infinity, the left-hand side tends to 1 while the right-hand side tends to
9
4
a. Therefore a has to be at most 4

9
.

Hence the largest value of a is 4
9
.

Solution 2. We shall give an alternative method to establish (1) with a = 4
9
. We define

yk = xk−xk−1 > 0 for 1 6 k 6 n. By the Cauchy-Schwarz Inequality, for 1 6 k 6 n, we have

(y1 + y2 + · · ·+ yk)

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é

>

((
2

2

)
+

(
3

2

)
+ · · ·+

(
k + 1

2

))2

=

(
k + 2

3

)2

.
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This can be rewritten as

k + 1

y1 + y2 + · · ·+ yk
6

36

k2(k + 1)(k + 2)2

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é
. (3)

Summing (3) over k = 1, 2, . . . , n, we get

2

y1
+

3

y1 + y2
+ · · ·+ n+ 1

y1 + y2 + · · ·+ yn
6
c1
y1

+
c2
y2

+ · · ·+ cn
yn

(4)

where for 1 6 m 6 n,

cm = 36

(
m+ 1

2

)2 n∑
k=m

1

k2(k + 1)(k + 2)2

=
9m2(m+ 1)2

4

n∑
k=m

Ç
1

k2(k + 1)2
− 1

(k + 1)2(k + 2)2

å
=

9m2(m+ 1)2

4

Ç
1

m2(m+ 1)2
− 1

(n+ 1)2(n+ 2)2

å
<

9

4
.

From (4), the inequality (1) holds for a = 4
9
. This is also the upper bound as can be

verified in the same way as Solution 1.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

Answer. The minimum number of guesses is 2 if n = 2k and 1 if n 6= 2k.

Solution 1. Let X be the binary string chosen by the leader and let X ′ be the binary string
of length n every digit of which is different from that of X. The strings written by the deputy
leader are the same as those in the case when the leader’s string is X ′ and k is changed to
n − k. In view of this, we may assume k > n

2
. Also, for the particular case k = n

2
, this

argument shows that the strings X and X ′ cannot be distinguished, and hence in that case
the contestant has to guess at least twice.

It remains to show that the number of guesses claimed suffices. Consider any string Y
which differs from X in m digits where 0 < m < 2k. Without loss of generality, assume
the first m digits of X and Y are distinct. Let Z be the binary string obtained from X by
changing its first k digits. Then Z is written by the deputy leader. Note that Z differs from Y
by |m− k| digits where |m− k| < k since 0 < m < 2k. From this observation, the contestant
must know that Y is not the desired string.

As we have assumed k > n
2
, when n < 2k, every string Y 6= X differs from X in fewer

than 2k digits. When n = 2k, every string except X and X ′ differs from X in fewer than 2k
digits. Hence, the answer is as claimed.

Solution 2. Firstly, assume n 6= 2k. Without loss of generality suppose the first digit of
the leader’s string is 1. Then among the

Ä
n
k

ä
strings written by the deputy leader,

Ä
n−1
k

ä
will

begin with 1 and
Ä
n−1
k−1

ä
will begin with 0. Since n 6= 2k, we have k + (k − 1) 6= n − 1 and

so
Ä
n−1
k

ä
6=
Ä
n−1
k−1

ä
. Thus, by counting the number of strings written by the deputy leader that

start with 0 and 1, the contestant can tell the first digit of the leader’s string. The same can
be done on the other digits, so 1 guess suffices when n 6= 2k.

Secondly, for the case n = 2 and k = 1, the answer is clearly 2. For the remaining cases
where n = 2k > 2, the deputy leader would write down the same strings if the leader’s string
X is replaced by X ′ obtained by changing each digit of X. This shows at least 2 guesses
are needed. We shall show that 2 guesses suffice in this case. Suppose the first two digits of
the leader’s string are the same. Then among the strings written by the deputy leader, the
prefices 01 and 10 will occur

Ä
2k−2
k−1

ä
times each, while the prefices 00 and 11 will occur

Ä
2k−2
k

ä
times each. The two numbers are interchanged if the first two digits of the leader’s string
are different. Since

Ä
2k−2
k−1

ä
6=
Ä
2k−2
k

ä
, the contestant can tell whether the first two digits of the

leader’s string are the same or not. He can work out the relation of the first digit and the
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other digits in the same way and reduce the leader’s string to only 2 possibilities. The proof
is complete.
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C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

Answer. 1.

Solution 1. Suppose all positive divisors of n can be arranged into a rectangular table of
size k × l where the number of rows k does not exceed the number of columns l. Let the
sum of numbers in each column be s. Since n belongs to one of the columns, we have s > n,
where equality holds only when n = 1.

For j = 1, 2, . . . , l, let dj be the largest number in the j-th column. Without loss of
generality, assume d1 > d2 > · · · > dl. Since these are divisors of n, we have

dl 6
n

l
. (1)

As dl is the maximum entry of the l-th column, we must have

dl >
s

k
>
n

k
. (2)

The relations (1) and (2) combine to give n
l
> n

k
, that is, k > l. Together with k 6 l, we

conclude that k = l. Then all inequalities in (1) and (2) are equalities. In particular, s = n
and so n = 1, in which case the conditions are clearly satisfied.

Solution 2. Clearly n = 1 works. Then we assume n > 1 and let its prime factorization be
n = pr11 p

r2
2 · · · prtt . Suppose the table has k rows and l columns with 1 < k 6 l. Note that kl is

the number of positive divisors of n and the sum of all entries is the sum of positive divisors
of n, which we denote by σ(n). Consider the column containing n. Since the column sum is
σ(n)
l

, we must have σ(n)
l
> n. Therefore, we have

(r1 + 1)(r2 + 1) · · · (rt + 1) = kl 6 l2 <

Ç
σ(n)

n

å2

=

Ç
1 +

1

p1
+ · · ·+ 1

pr11

å2

· · ·
Ç

1 +
1

pt
+ · · ·+ 1

prtt

å2

.

This can be rewritten as
f(p1, r1)f(p2, r2) · · · f(pt, rt) < 1 (3)

where

f(p, r) =
r + 1(

1 + 1
p

+ · · ·+ 1
pr

)2 =
(r + 1)

(
1− 1

p

)2
(
1− 1

pr+1

)2 .
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Direct computation yields

f(2, 1) =
8

9
, f(2, 2) =

48

49
, f(3, 1) =

9

8
.

Also, we find that

f(2, r) >
Ç

1− 1

2r+1

å−2
> 1 for r > 3,

f(3, r) >
4

3

Ç
1− 1

3r+1

å−2
>

4

3
>

9

8
for r > 2, and

f(p, r) >
32

25

Ç
1− 1

pr+1

å−2
>

32

25
>

9

8
for p > 5.

From these values and bounds, it is clear that (3) holds only when n = 2 or 4. In both cases,
it is easy to see that the conditions are not satisfied. Hence, the only possible n is 1.
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C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

Solution. For k = 1, 2, 3, let ak be the number of isosceles triangles whose vertices contain
exactly k colours. Suppose on the contrary that a3 = 0. Let b, c, d be the number of vertices
of the three different colours respectively. We now count the number of pairs (4, E) where
4 is an isosceles triangle and E is a side of 4 whose endpoints are of different colours.

On the one hand, since we have assumed a3 = 0, each triangle in the pair must contain
exactly two colours, and hence each triangle contributes twice. Thus the number of pairs is
2a2.

On the other hand, if we pick any two vertices A,B of distinct colours, then there are
three isosceles triangles having these as vertices, two when AB is not the base and one when
AB is the base since n is odd. Note that the three triangles are all distinct as (n, 3) = 1. In
this way, we count the number of pairs to be 3(bc+ cd+ db). However, note that 2a2 is even
while 3(bc+ cd+ db) is odd, as each of b, c, d is. This yields a contradiction and hence a3 > 1.

Comment. A slightly stronger version of this problem is to replace the condition (n, 6) = 1
by n being odd (where equilateral triangles are regarded as isosceles triangles). In that case,
the only difference in the proof is that by fixing any two vertices A,B, one can find exactly
one or three isosceles triangles having these as vertices. But since only parity is concerned in
the solution, the proof goes the same way.

The condition that there is an odd number of vertices of each colour is necessary, as can be
seen from the following example. Consider n = 25 and we label the vertices A0, A1, . . . , A24.
Suppose colour 1 is used for A0, colour 2 is used for A5, A10, A15, A20, while colour 3 is used
for the remaining vertices. Then any isosceles triangle having colours 1 and 2 must contain
A0 and one of A5, A10, A15, A20. Clearly, the third vertex must have index which is a multiple
of 5 so it is not of colour 3.
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C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

Answer. n can be any multiple of 9.

Solution. We first show that such a table exists when n is a multiple of 9. Consider the
following 9× 9 table. 

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M


(1)

It is a direct checking that the table (1) satisfies the requirements. For n = 9k where k is
a positive integer, we form an n × n table using k × k copies of (1). For each row and each
column of the table of size n, since there are three I’s, three M ’s and three O’s for any nine
consecutive entries, the numbers of I, M and O are equal. In addition, every diagonal of the
large table whose number of entries is divisible by 3 intersects each copy of (1) at a diagonal
with number of entries divisible by 3 (possibly zero). Therefore, every such diagonal also
contains the same number of I, M and O.

Next, consider any n× n table for which the requirements can be met. As the number of
entries of each row should be a multiple of 3, we let n = 3k where k is a positive integer. We
divide the whole table into k × k copies of 3 × 3 blocks. We call the entry at the centre of
such a 3× 3 square a vital entry. We also call any row, column or diagonal that contains at
least one vital entry a vital line. We compute the number of pairs (l, c) where l is a vital line
and c is an entry belonging to l that contains the letter M . We let this number be N .

On the one hand, since each vital line contains the same number of I, M and O, it is
obvious that each vital row and each vital column contain k occurrences of M . For vital
diagonals in either direction, we count there are exactly

1 + 2 + · · ·+ (k − 1) + k + (k − 1) + · · ·+ 2 + 1 = k2

occurrences of M . Therefore, we have N = 4k2.
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On the other hand, there are 3k2 occurrences of M in the whole table. Note that each
entry belongs to exactly 1 or 4 vital lines. Therefore, N must be congruent to 3k2 mod 3.

From the double counting, we get 4k2 ≡ 3k2 (mod 3), which forces k to be a multiple of
3. Therefore, n has to be a multiple of 9 and the proof is complete.
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C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.

Answer. n− 2 if n is even and n− 3 if n is odd.

Solution 1. We consider two cases according to the parity of n.

• Case 1. n is odd.

We first claim that no pair of diagonals is perpendicular. Suppose A,B,C,D are vertices
where AB and CD are perpendicular, and let E be the vertex lying on the perpendicular
bisector of AB. Let E ′ be the opposite point of E on the circumcircle of the regular polygon.
Since EC = E ′D and C,D,E are vertices of the regular polygon, E ′ should also belong to
the polygon. This contradicts the fact that a regular polygon with an odd number of vertices
does not contain opposite points on the circumcircle.

A B

C

D

E

E ′

Therefore in the odd case we can only select diagonals which do not intersect. In the
maximal case these diagonals should divide the regular n-gon into n− 2 triangles, so we can
select at most n − 3 diagonals. This can be done, for example, by selecting all diagonals
emanated from a particular vertex.

• Case 2. n is even.

If there is no intersection, then the proof in the odd case works. Suppose there are two
perpendicular diagonals selected. We consider the set S of all selected diagonals parallel to
one of them which intersect with some selected diagonals. Suppose S contains k diagonals
and the number of distinct endpoints of the k diagonals is l.

Firstly, consider the longest diagonal in one of the two directions in S. No other diagonal
in S can start from either endpoint of that diagonal, since otherwise it has to meet another
longer diagonal in S. The same holds true for the other direction. Ignoring these two longest
diagonals and their four endpoints, the remaining k−2 diagonals share l−4 endpoints where
each endpoint can belong to at most two diagonals. This gives 2(l − 4) > 2(k − 2), so that
k 6 l − 2.
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d1

d2
d

d1

d2
d

Consider a group of consecutive vertices of the regular n-gon so that each of the two
outermost vertices is an endpoint of a diagonal in S, while the interior points are not. There
are l such groups. We label these groups P1, P2, . . . , Pl in this order. We claim that each
selected diagonal outside S must connect vertices of the same group Pi. Consider any diagonal
d joining vertices from distinct groups Pi and Pj. Let d1 and d2 be two diagonals in S each
having one of the outermost points of Pi as endpoint. Then d must meet either d1, d2 or a
diagonal in S which is perpendicular to both d1 and d2. In any case d should belong to S by
definition, which is a contradiction.

Within the same group Pi, there are no perpendicular diagonals since the vertices belong
to the same side of a diameter of the circumcircle. Hence there can be at most |Pi|−2 selected
diagonals within Pi, including the one joining the two outermost points of Pi when |Pi| > 2.
Therefore, the maximum number of diagonals selected is

l∑
i=1

(|Pi| − 2) + k =
l∑

i=1

|Pi| − 2l + k = (n+ l)− 2l + k = n− l + k 6 n− 2.

This upper bound can be attained as follows. We take any vertex A and let A′ be the
vertex for which AA′ is a diameter of the circumcircle. If we select all diagonals emanated
from A together with the diagonal d′ joining the two neighbouring vertices of A′, then the
only pair of diagonals that meet each other is AA′ and d′, which are perpendicular to each
other. In total we can take n− 2 diagonals.

d′

A

A′

Solution 2. The constructions and the odd case are the same as Solution 1. Instead of
dealing separately with the case where n is even, we shall prove by induction more generally
that we can select at most n− 2 diagonals for any cyclic n-gon with circumcircle Γ.



38 IMO 2016 Hong Kong

The base case n = 3 is trivial since there is no diagonal at all. Suppose the upper bound
holds for any cyclic polygon with fewer than n sides. For a cyclic n-gon, if there is a selected
diagonal which does not intersect any other selected diagonal, then this diagonal divides the
n-gon into an m-gon and an l-gon (with m+ l = n+2) so that each selected diagonal belongs
to one of them. Without loss of generality, we may assume the m-gon lies on the same side
of a diameter of Γ. Then no two selected diagonals of the m-gon can intersect, and hence we
can select at most m− 3 diagonals. Also, we can apply the inductive hypothesis to the l-gon.
This shows the maximum number of selected diagonals is (m− 3) + (l − 2) + 1 = n− 2.

It remains to consider the case when all selected diagonals meet at least one other selected
diagonal. Consider a pair of selected perpendicular diagonals d1, d2. They divide the circum-
ference of Γ into four arcs, each of which lies on the same side of a diameter of Γ. If there
are two selected diagonals intersecting each other and neither is parallel to d1 or d2, then
their endpoints must belong to the same arc determined by d1, d2, and hence they cannot be
perpendicular. This violates the condition, and hence all selected diagonals must have the
same direction as one of d1, d2.

d1

d2

Take the longest selected diagonal in one of the two directions. We argue as in Solution
1 that its endpoints do not belong to any other selected diagonal. The same holds true for
the longest diagonal in the other direction. Apart from these four endpoints, each of the
remaining n− 4 vertices can belong to at most two selected diagonals. Thus we can select at
most 1

2
(2(n− 4) + 4) = n− 2 diagonals. Then the proof follows by induction.
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C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

Solution. Initially, we pick any pair of islands A and B which are connected by a ferry route
and put A in set A and B in set B. From the condition, without loss of generality there must
be another island which is connected to A. We put such an island C in set B. We say that
two sets of islands form a network if each island in one set is connected to each island in the
other set.

Next, we shall included all islands to A∪B one by one. Suppose we have two sets A and
B which form a network where 3 6 |A ∪ B| < n. This relation no longer holds only when a
ferry route between islands A ∈ A and B ∈ B is closed. In that case, we define A′ = {A,B},
and B′ = (A ∪ B) − {A,B}. Note that B′ is nonempty. Consider any island C ∈ A − {A}.
From the relation of A and B, we know that C is connected to B. If C was not connected to
A before the route between A and B closes, then there will be a route added between C and
A afterwards. Hence, C must now be connected to both A and B. The same holds true for
any island in B − {B}. Therefore, A′ and B′ form a network, and A′ ∪ B′ = A ∪ B. Hence
these islands can always be partitioned into sets A and B which form a network.

As |A ∪ B| < n, there are some islands which are not included in A ∪ B. From the
condition, after some years there must be a ferry route between an island A in A∪B and an
island D outside A ∪ B which closes. Without loss of generality assume A ∈ A. Then each
island in B must then be connected to D, no matter it was or not before. Hence, we can
put D in set A so that the new sets A and B still form a network and the size of A ∪ B is
increased by 1. The same process can be done to increase the size of A ∪ B. Eventually, all
islands are included in this way so we may now assume |A ∪ B| = n.

Suppose a ferry route between A ∈ A and B ∈ B is closed after some years. We put A
and B in set A′ and all remaining islands in set B′. Then A′ and B′ form a network. This
relation no longer holds only when a route between A, without loss of generality, and C ∈ B′
is closed. Since this must eventually occur, at that time island B will be connected to all
other islands and the result follows.
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C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

Solution. We consider a big disk which contains all the segments. We extend each segment
to a line li so that each of them cuts the disk at two distinct points Ai, Bi.

(a) For odd n, we travel along the circumference of the disk and mark each of the points Ai
or Bi ‘in’ and ‘out’ alternately. Since every pair of lines intersect in the disk, there are
exactly n− 1 points between Ai and Bi for any fixed 1 6 i 6 n. As n is odd, this means
one of Ai and Bi is marked ‘in’ and the other is marked ‘out’. Then Jeff can put a snail
on the endpoint of each segment which is closer to the ‘in’ side of the corresponding line.
We claim that the snails on li and lj do not meet for any pairs i, j, hence proving part
(a).

Ai

Aj

P

Ai Aj

P

Without loss of generality, we may assume the snails start at Ai and Aj respectively.
Let li intersect lj at P . Note that there is an odd number of points between arc AiAj.
Each of these points belongs to a line lk. Such a line lk must intersect exactly one of
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the segments AiP and AjP , making an odd number of intersections. For the other lines,
they may intersect both segments AiP and AjP , or meet none of them. Therefore, the
total number of intersection points on segments AiP and AjP (not counting P ) is odd.
However, if the snails arrive at P at the same time, then there should be the same number
of intersections on AiP and AjP , which gives an even number of intersections. This is a
contradiction so the snails do not meet each other.

(b) For even n, we consider any way that Jeff places the snails and mark each of the points
Ai or Bi ‘in’ and ‘out’ according to the directions travelled by the snails. In this case
there must be two neighbouring points Ai and Aj both of which are marked ‘in’. Let
P be the intersection of the segments AiBi and AjBj. Then any other segment meeting
one of the segments AiP and AjP must also meet the other one, and so the number of
intersections on AiP and AjP are the same. This shows the snails starting from Ai and
Aj will meet at P .

Comment. The conclusions do not hold for pseudosegments, as can be seen from the follow-
ing examples.
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C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.

Answer. 2n.

Solution. We first construct an example of marking 2n cells satisfying the requirement.
Label the rows and columns 1, 2, . . . , 2n and label the cell in the i-th row and the j-th column
(i, j).

For i = 1, 2, . . . , n, we mark the cells (i, i) and (i, i + 1). We claim that the required
partition exists and is unique. The two diagonals of the board divide the board into four
regions. Note that the domino covering cell (1, 1) must be vertical. This in turn shows that
each domino covering (2, 2), (3, 3), . . . , (n, n) is vertical. By induction, the dominoes in the
left region are all vertical. By rotational symmetry, the dominoes in the bottom region are
horizontal, and so on. This shows that the partition exists and is unique.

It remains to show that this value of k is the smallest possible. Assume that only k < 2n
cells are marked, and there exists a partition P satisfying the requirement. It suffices to show
there exists another desirable partition distinct from P . Let d be the main diagonal of the
board.

Construct the following graph with edges of two colours. Its vertices are the cells of the
board. Connect two vertices with a red edge if they belong to the same domino of P . Connect
two vertices with a blue edge if their reflections in d are connected by a red edge. It is possible
that two vertices are connected by edges of both colours. Clearly, each vertex has both red
and blue degrees equal to 1. Thus the graph splits into cycles where the colours of edges in
each cycle alternate (a cycle may have length 2).

Consider any cell c lying on the diagonal d. Its two edges are symmetrical with respect
to d. Thus they connect c to different cells. This shows c belongs to a cycle C(c) of length at
least 4. Consider a part of this cycle c0, c1, . . . , cm where c0 = c and m is the least positive
integer such that cm lies on d. Clearly, cm is distinct from c. From the construction, the path
symmetrical to this with respect to d also lies in the graph, and so these paths together form
C(c). Hence, C(c) contains exactly two cells from d. Then all 2n cells in d belong to n cycles
C1, C2, . . . , Cn, each has length at least 4.

By the Pigeonhole Principle, there exists a cycle Ci containing at most one of the k marked
cells. We modify P as follows. We remove all dominoes containing the vertices of Ci, which



Shortlisted problems 43

correspond to the red edges of Ci. Then we put the dominoes corresponding to the blue edges
of Ci. Since Ci has at least 4 vertices, the resultant partition P ′ is different from P . Clearly,
no domino in P ′ contains two marked cells as Ci contains at most one marked cell. This
shows the partition is not unique and hence k cannot be less than 2n.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA. (1)

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

Solution 1. Denote the common angle in (1) by θ. As 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. From EA = ED, we get

∠AFD = ∠ABC = 90◦ + θ = 180◦ − 1

2
∠AED.

Hence, F lies on the circle with centre E and radius EA. In particular, EF = EA = ED.
As ∠EFA = ∠EAF = 2θ = ∠BFC, points B,F,E are collinear.

As ∠EDA = ∠MAD, we have ED//AM and hence E,D,X are collinear. As M is the
midpoint of CF and ∠CBF = 90◦, we get MF = MB. In the isosceles triangles EFA and
MFB, we have ∠EFA = ∠MFB and AF = BF . Therefore, they are congruent to each
other. Then we have BM = AE = XM and BE = BF + FE = AF + FM = AM = EX.
This shows 4EMB ∼= 4EMX. As F and D lie on EB and EX respectively and EF = ED,
we know that lines BD and XF are symmetric with respect to EM . It follows that the three
lines are concurrent.

A B

D

F

ME

C

X
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Solution 2. From ∠CAD = ∠EDA, we have AC//ED. Together with AC//EX, we know
that E,D,X are collinear. Denote the common angle in (1) by θ. From 4ABF ∼ 4ACD,
we get AB

AC
= AF

AD
so that 4ABC ∼ 4AFD. This yields ∠AFD = ∠ABC = 90◦ + θ and

hence ∠FDC = 90◦, implying that BCDF is cyclic. Let Γ1 be its circumcircle.
Next, from 4ABF ∼ 4ADE, we have AB

AD
= AF

AE
so that 4ABD ∼ 4AFE. Therefore,

∠AFE = ∠ABD = θ + ∠FBD = θ + ∠FCD = 2θ = 180◦ − ∠BFA.

This implies B,F,E are collinear. Note that F is the incentre of triangle DAB. Point E
lies on the internal angle bisector of ∠DBA and lies on the perpendicular bisector of AD. It
follows that E lies on the circumcircle Γ2 of triangle ABD, and EA = EF = ED.

Also, since CF is a diameter of Γ1 and M is the midpoint of CF , M is the centre of Γ1 and
hence ∠AMD = 2θ = ∠ABD. This showsM lies on Γ2. Next, ∠MDX = ∠MAE = ∠DXM
since AMXE is a parallelogram. Hence MD = MX and X lies on Γ1.

A B

D

F

ME

C

X

We now have two ways to complete the solution.

• Method 1. From EF = EA = XM and EX//FM , EFMX is an isosceles trapezoid and
is cyclic. Denote its circumcircle by Γ3. Since BD,EM,FX are the three radical axes of
Γ1,Γ2,Γ3, they must be concurrent.

• Method 2. As ∠DMF = 2θ = ∠BFM , we have DM//EB. Also,

∠BFD + ∠XBF = ∠BFC + ∠CFD + 90◦ − ∠CBX = 2θ + (90◦ − θ) + 90◦ − θ = 180◦

implies DF//XB. These show the corresponding sides of triangles DMF and BEX are
parallel. By Desargues’ Theorem, the two triangles are perspective and hence DB,ME,FX
meet at a point.
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Comment. In Solution 2, both the Radical Axis Theorem and Desargues’ Theorem could
imply DB,ME,FX are parallel. However, this is impossible as can be seen from the config-
uration. For example, it is obvious that DB and ME meet each other.

Solution 3. Let the common angle in (1) be θ. From 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. Then ∠ADF = ∠ACB = 90◦ − 2θ = 90◦ − ∠BAD and hence
DF ⊥ AB. As FA = FB, this implies 4DAB is isosceles with DA = DB. Then F is the
incentre of 4DAB.

Next, from ∠AED = 180◦ − 2θ = 180◦ − ∠DBA, points A,B,D,E are concyclic. Since
we also have EA = ED, this shows E,F,B are collinear and EA = EF = ED.

A B

D

F

ME

C

X

P

Q

Note that C lies on the internal angle bisector of ∠BAD and lies on the external angle
bisector of ∠DBA. It follows that it is the A-excentre of triangle DAB. As M is the midpoint
of CF , M lies on the circumcircle of triangle DAB and it is the centre of the circle passing
through D,F,B,C. By symmetry, DEFM is a rhombus. Then the midpoints of AX,EM
and DF coincide, and it follows that DAFX is a parallelogram.

Let P be the intersection of BD and EM , and Q be the intersection of AD and BE. From
∠BAC = ∠DCA, we know that DC,AB,EM are parallel. Thus we have DP

PB
= CM

MA
. This is

further equal to AE
BE

since CM = DM = DE = AE and MA = BE. From4AEQ ∼ 4BEA,
we find that

DP

PB
=
AE

BE
=
AQ

BA
=
QF

FB

by the Angle Bisector Theorem. This implies QD//FP and hence F, P,X are collinear, as
desired.
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G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

Solution 1. Let AM meet Γ again at Y and XY meet BC at D′. It suffices to show D′ = D.
We shall apply the following fact.

• Claim. For any cyclic quadrilateral PQRS whose diagonals meet at T , we have

QT

TS
=
PQ ·QR
PS · SR

.

Proof. We use [W1W2W3] to denote the area of W1W2W3. Then

QT

TS
=

[PQR]

[PSR]
=

1
2
PQ ·QR sin∠PQR
1
2
PS · SR sin∠PSR

=
PQ ·QR
PS · SR

.

Applying the Claim to ABY C and XBY C respectively, we have 1 = BM
MC

= AB·BY
AC·CY and

BD′

D′C
= XB·BY

XC·CY . These combine to give

BD′

CD′
=
XB

XC
· BY
CY

=
XB

XC
· AC
AB

. (1)

Next, we use directed angles to find that ]XBF = ]XBA = ]XCA = ]XCE and
]XFB = ]XFA = ]XEA = ]XEC. This shows triangles XBF and XCE are directly
similar. In particular, we have

XB

XC
=
BF

CE
. (2)

In the following, we give two ways to continue the proof.

• Method 1. Here is a geometrical method. As ∠FIB = ∠AIB − 90◦ = 1
2
∠ACB = ∠ICB

and ∠FBI = ∠IBC, the triangles FBI and IBC are similar. Analogously, triangles EIC
and IBC are also similar. Hence, we get

FB

IB
=
BI

BC
and

EC

IC
=

IC

BC
. (3)
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A

B C

I

D

E

F

X

M

Y

B2

C2

B1
C1

Next, construct a line parallel to BC and tangent to the incircle. Suppose it meets sides
AB and AC at B1 and C1 respectively. Let the incircle touch AB and AC at B2 and C2

respectively. By homothety, the line B1I is parallel to the external angle bisector of ∠ABC,
and hence ∠B1IB = 90◦. Since ∠BB2I = 90◦, we get BB2 · BB1 = BI2, and similarly
CC2 · CC1 = CI2. Hence,

BI2

CI2
=
BB2 ·BB1

CC2 · CC1

=
BB1

CC1

· BD
CD

=
AB

AC
· BD
CD

. (4)

Combining (1), (2), (3) and (4), we conclude

BD′

CD′
=
XB

XC
· AC
AB

=
BF

CE
· AC
AB

=
BI2

CI2
· AC
AB

=
BD

CD

so that D′ = D. The result then follows.

• Method 2. We continue the proof of Solution 1 using trigonometry. Let β = 1
2
∠ABC

and γ = 1
2
∠ACB. Observe that ∠FIB = ∠AIB − 90◦ = γ. Hence, BF

FI
= sin∠FIB

sin∠IBF = sin γ
sinβ

.

Similarly, CE
EI

= sinβ
sin γ

. As FI = EI, we get

BF

CE
=
BF

FI
· EI
CE

=

Ç
sin γ

sin β

å2

. (5)
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Together with (1) and (2), we find that

BD′

CD′
=
AC

AB
·
Ç

sin γ

sin β

å2

=
sin 2β

sin 2γ
·
Ç

sin γ

sin β

å2

=
tan γ

tan β
=
ID/CD

ID/BD
=
BD

CD
.

This shows D′ = D and the result follows.

Solution 2. Let ωA be the A-mixtilinear incircle of triangle ABC. From the properties of
mixtilinear incircles, ωA touches sides AB and AC at F and E respectively. Suppose ωA
is tangent to Γ at T . Let AM meet Γ again at Y , and let D1, T1 be the reflections of D
and T with respect to the perpendicular bisector of BC respectively. It is well-known that
∠BAT = ∠D1AC so that A,D1, T1 are collinear.

A

B C

I

D

E

F

X

M

Y

T

D1

T1

R

S

P

We then show that X,M, T1 are collinear. Let R be the radical centre of ωA,Γ and the
circumcircle of triangle AEF . Then R lies on AX,EF and the tangent at T to Γ. Let AT
meet ωA again at S and meet EF at P . Obviously, SFTE is a harmonic quadrilateral.
Projecting from T , the pencil (R,P ;F,E) is harmonic. We further project the pencil onto
Γ from A, so that XBTC is a harmonic quadrilateral. As TT1//BC, the projection from T1
onto BC maps T to a point at infinity, and hence maps X to the midpoint of BC, which is
M . This shows X,M, T1 are collinear.

We have two ways to finish the proof.

• Method 1. Note that both AY and XT1 are chords of Γ passing through the midpoint M
of the chord BC. By the Butterfly Theorem, XY and AT1 cut BC at a pair of symmetric
points with respect to M , and hence X,D, Y are collinear. The proof is thus complete.
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• Method 2. Here, we finish the proof without using the Butterfly Theorem. As DTT1D1

is an isosceles trapezoid, we have

]Y TD = ]Y TT1 + ]T1TD = ]Y AT1 + ]AD1D = ]YMD

so that D,T, Y,M are concyclic. As X,M, T1 are collinear, we have

]AYD = ]MTD = ]D1T1M = ]AT1X = ]AYX.

This shows X,D, Y are collinear.
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G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

Solution. If in the similarity of 4ABC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the longest
side of 4P1P2P3, then we have BC > AB > AC. The condition BC > AB is equivalent to
(x + 1)2 + y2 6 4, while AB > AC is trivially satisfied for any point in the first quadrant.
Then we first define

S = {(x, y) : (x+ 1)2 + y2 6 4, x > 0, y > 0}.

Note that S is the intersection of a disk and the first quadrant, so it is bounded and convex,
and we can choose any T ∈ S to meet condition (i). For any point A in S, the relation
BC > AB > AC always holds. Therefore, the point A in (ii) is uniquely determined, while
its existence is guaranteed by the above construction.

S
S ′

x

y

OB C

T ′

Next, if in the similarity of 4A′BC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the second
longest side of4P1P2P3, then we have A′B > BC > A′C. The two inequalities are equivalent
to (x+ 1)2 + y2 > 4 and (x− 1)2 + y2 6 4 respectively. Then we define

S ′ = {(x, y) : (x+ 1)2 + y2 > 4, (x− 1)2 + y2 6 4, x > 0, y > 0}.
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The boundedness condition is satisfied while (ii) can be argued as in the previous case. For
(i), note that S ′ contains points inside the disk (x − 1)2 + y2 6 4 and outside the disk
(x + 1)2 + y2 > 4. This shows we can take T ′ = (1, 2) in (i), which is the topmost point of
the circle (x− 1)2 + y2 = 4.

It remains to check that the product BA · BA′ is a constant. Suppose we are given a
triangle P1P2P3 with P1P2 > P2P3 > P3P1. By the similarity, we have

BA = BC · P2P3

P1P2

and BA′ = BC · P1P2

P2P3

.

Thus BA ·BA′ = BC2 = 4, which is certainly independent of the triangle P1P2P3.

Comment. The original version of this problem includes the condition that the interiors of
S and S ′ are disjoint. We remove this condition since it is hard to define the interior of a
point set rigorously.
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G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

Solution 1.

B

C

A I

D

E

I ′

F

J

Let Γ be the circle with centre E passing through B and C. Since ED ⊥ AC, the point
F symmetric to C with respect to D lies on Γ. From ∠DCI = ∠ICB = ∠CBI, the line
DC is a tangent to the circumcircle of triangle IBC. Let J be the symmetric point of I with
respect to D. Using directed lengths, from

DC ·DF = −DC2 = −DI ·DB = DJ ·DB,

the point J also lies on Γ. Let I ′ be the reflection of I in AC. Since IJ and CF bisect each
other, CJFI is a parallelogram. From ∠FI ′C = ∠CIF = ∠FJC, we find that I ′ lies on Γ.
This gives EI ′ = EB.

Note that AC is the internal angle bisector of ∠BDI ′. This shows DE is the external
angle bisector of ∠BDI ′ as DE ⊥ AC. Together with EI ′ = EB, it is well-known that E
lies on the circumcircle of triangle BDI ′.

Solution 2. Let I ′ be the reflection of I in AC and let S be the intersection of I ′C and AI.
Using directed angles, we let θ = ]ACI = ]ICB = ]CBI. We have

]I ′SE = ]I ′CA+ ]CAI = θ +
Åπ

2
+ 2θ

ã
= 3θ +

π

2

and
]I ′DE = ]I ′DC +

π

2
= ]CDI +

π

2
= ]DCB + ]CBD +

π

2
= 3θ +

π

2
.

This shows I ′, D,E, S are concyclic.
Next, we find ]I ′SB = 2]I ′SE = 6θ and ]I ′DB = 2]CDI = 6θ. Therefore, I ′, D,B, S

are concyclic so that I ′, D,E,B, S lie on the same circle. The result then follows.
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B

C

A
I

D

E

I ′

S

Comment. The point S constructed in Solution 2 may lie on the same side as A of BC.
Also, since S lies on the circumcircle of the non-degenerate triangle BDE, we implicitly know
that S is not an ideal point. Indeed, one can verify that I ′C and AI are parallel if and only
if triangle ABC is equilateral.

Solution 3. Let I ′ be the reflection of I in AC, and let D′ be the second intersection of AI
and the circumcircle of triangle ABD. Since AD′ bisects ∠BAD, point D′ is the midpoint of
the arc BD and DD′ = BD′ = CD′. Obviously, A,E,D′ lie on AI in this order.

B

C

A
I

D

E

I ′

D′

We find that ∠ED′D = ∠AD′D = ∠ABD = ∠IBC = ∠ICB. Next, since D′ is the
circumcentre of triangle BCD, we have ∠EDD′ = 90◦ − ∠D′DC = ∠CBD = ∠IBC. The
two relations show that triangles ED′D and ICB are similar. Therefore, we have

BC

CI ′
=
BC

CI
=
DD′

D′E
=
BD′

D′E
.

Also, we get

∠BCI ′ = ∠BCA+ ∠ACI ′ = ∠BCA+ ∠ICA = ∠BCA+ ∠DBC = ∠BDA = ∠BD′E.

These show triangles BCI ′ and BD′E are similar, and hence triangles BCD′ and BI ′E are
similar. As BCD′ is isosceles, we obtain BE = I ′E.

As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on
the circumcircle of triangle BDI ′.
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Solution 4. Let AI and BI meet the circumcircle of triangle ABC again at A′ and B′

respectively, and let E ′ be the reflection of E in AC. From

∠B′AE ′ = ∠B′AD − ∠E ′AD =
∠ABC

2
− ∠BAC

2
= 90◦ − ∠BAC − ∠ABC

2
= 90◦ − ∠B′DA = ∠B′DE ′,

points B′, A,D,E ′ are concyclic. Then

∠DB′E ′ = ∠DAE ′ =
∠BAC

2
= ∠BAA′ = ∠DB′A′

and hence B′, E ′, A′ are collinear. It is well-known that A′B′ is the perpendicular bisector of
CI, so that CE ′ = IE ′. Let I ′ be the reflection of I in AC. This implies BE = CE = I ′E.
As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on the
circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

A′

B′

E ′

Solution 5. Let F be the intersection of CI and AB. Clearly, F and D are symmetric with
respect to AI. Let O be the circumcentre of triangle BIF , and let I ′ be the reflection of I in
AC.

B

C

A I

D

E

I ′

F
O
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From ∠BFO = 90◦ − ∠FIB = 1
2
∠BAC = ∠BAI, we get EI//FO. Also, from the

relation ∠OIB = 90◦ − ∠BFI = 90◦ − ∠CDI = ∠I ′ID, we know that O, I, I ′ are collinear.
Note that ED//OI since both are perpendicular to AC. Then ∠FEI = ∠DEI = ∠OIE.

Together with EI//FO, the quadrilateral EFOI is an isosceles trapezoid. Therefore, we find
that ∠DIE = ∠FIE = ∠OEI so OE//ID. Then DEOI is a parallelogram. Hence, we have
DI ′ = DI = EO, which shows DEOI ′ is an isosceles trapezoid. In addition, ED = OI = OB
and OE//BD imply EOBD is another isosceles trapezoid. In particular, both DEOI ′ and
EOBD are cyclic. This shows B,D,E, I ′ are concyclic.

Solution 6. Let I ′ be the reflection of I in AC. Denote by T and M the projections from I
to sides AB and BC respectively. Since BI is the perpendicular bisector of TM , we have

DT = DM. (1)

Since ∠ADE = ∠ATI = 90◦ and ∠DAE = ∠TAI, we have4ADE ∼ 4ATI. This shows
AD
AE

= AT
AI

= AT
AI′

. Together with ∠DAT = 2∠DAE = ∠EAI ′, this yields 4DAT ∼ 4EAI ′.
In particular, we have

DT

EI ′
=
AT

AI ′
=
AT

AI
. (2)

Obviously, the right-angled triangles AMB and ATI are similar. Then we get

AM

AB
=
AT

AI
. (3)

Next, from 4AMB ∼ 4ATI ∼ 4ADE, we have AM
AB

= AD
AE

so that 4ADM ∼ 4AEB.
It follows that

DM

EB
=
AM

AB
. (4)

Combining (1), (2), (3) and (4), we get EB = EI ′. As DE is the external angle bisector
of ∠BDI ′, we know that E lies on the circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

M

T
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Comment. A stronger version of this problem is to ask the contestants to prove the reflection
of I in AC lies on the circumcircle of triangle BDE if and only if AB = AC. Some of the
above solutions can be modified to prove the converse statement to the original problem. For
example, we borrow some ideas from Solution 2 to establish the converse as follows.

B

C

A
I

D

E

I ′

S

Let I ′ be the reflection of I in AC and suppose B,E,D, I ′ lie on a circle Γ. Let AI meet
Γ again at S. As DE is the external angle bisector of ∠BDI ′, we have EB = EI ′. Using
directed angles, we get

]CI ′S = ]CI ′D + ]DI ′S = ]DIC + ]DES = ]DIC + ]DEA = ]DIC + ]DCB = 0.

This means I ′, C, S are collinear. From this we get ]BSE = ]ESI ′ = ]ESC and hence
AS bisects both ∠BAC and ∠BSC. Clearly, S and A are distinct points. It follows that
4BAS ∼= 4CAS and thus AB = AC.

As in some of the above solutions, an obvious way to prove the stronger version is to
establish the following equivalence: BE = EI ′ if and only if AB = AC. In addition to the
ideas used in those solutions, one can use trigonometry to express the lengths of BE and EI ′

in terms of the side lengths of triangle ABC and to establish the equivalence.
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G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .

Solution 1. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let Q be the midpoint of AH and N be the nine-point centre of triangle ABC. It is
known that Q lies on the nine-point circle of triangle ABC, N is the midpoint of QM and
that QM is parallel to AO.

Let the perpendicular from S to XY meet line QM at S ′. Let E be the foot of altitude
from B to side AC. Since Q and S lie on the perpendicular bisector of AD, using directed
angles, we have

]SDQ = ]QAS = ]XAS − ]XAQ =
Åπ

2
− ]AYX

ã
− ]BAP = ]CBA− ]AYX

= (]CBA− ]ACB)− ]BCA− ]AYX = ]PEM − (]BCA+ ]AYX)

= ]PQM − ∠(BC,XY ) =
π

2
− ∠(S ′Q,BC)− ∠(BC,XY ) = ]SS ′Q.

This shows D,S ′, S,Q are concyclic.

A

B C

H OD

S

X

Y

P M

Q

N S ′

E

O1

Let the perpendicular from N to BC intersect line SS ′ at O1. (Note that the two lines
coincide when S is the midpoint of AO, in which case the result is true since the circumcentre
of triangle XSY must lie on this line.) It suffices to show that O1 is the circumcentre of
triangle XSY since N lies on the perpendicular bisector of PM . From

]DS ′O1 = ]DQS = ]SQA = ∠(SQ,QA) = ∠(OD,O1N) = ]DNO1
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since SQ//OD and QA//O1N , we know that D,O1, S
′, N are concyclic. Therefore, we get

]SDS ′ = ]SQS ′ = ∠(SQ,QS ′) = ∠(ND,NS ′) = ]DNS ′,

so that SD is a tangent to the circle through D,O1, S
′, N . Then we have

SS ′ · SO1 = SD2 = SX2. (1)

Next, we show that S and S ′ are symmetric with respect to XY . By the Sine Law, we
have

SS ′

sin∠SQS ′
=

SQ

sin∠SS ′Q
=

SQ

sin∠SDQ
=

SQ

sin∠SAQ
=

SA

sin∠SQA
.

It follows that

SS ′ = SA · sin∠SQS ′

sin∠SQA
= SA · sin∠HOA

sin∠OHA
= SA · AH

AO
= SA · 2 cosA,

which is twice the distance from S to XY . Note that S and C lie on the same side of the
perpendicular bisector of PM if and only if ∠SAC < ∠OAC if and only if ∠Y XA > ∠CBA.
This shows S and O1 lie on different sides of XY . As S ′ lies on ray SO1, it follows that S
and S ′ cannot lie on the same side of XY . Therefore, S and S ′ are symmetric with respect
to XY .

Let d be the diameter of the circumcircle of triangle XSY . As SS ′ is twice the distance
from S to XY and SX = SY , we have SS ′ = 2SX

2

d
. It follows from (1) that d = 2SO1. As

SO1 is the perpendicular bisector of XY , point O1 is the circumcentre of triangle XSY .

Solution 2. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let O1 be the circumcentre of triangle XSY . Consider two other possible positions of
S. We name them S ′ and S ′′ and define the analogous points X ′, Y ′, O′1, X

′′, Y ′′O′′1 accordingly.
Note that S, S ′, S ′′ lie on the perpendicular bisector of AD.

As XX ′ and Y Y ′ meet at A and the circumcircles of triangles AXY and AX ′Y ′ meet at
D, there is a spiral similarity with centre D mapping XY to X ′Y ′. We find that

]SXY =
π

2
− ]Y AX =

π

2
− ]Y ′AX ′ = ]S ′X ′Y ′

and similarly ]SY X = ]S ′Y ′X ′. This shows triangles SXY and S ′X ′Y ′ are directly similar.
Then the spiral similarity with centre D takes points S,X, Y,O1 to S ′, X ′, Y ′, O′1. Similarly,
there is a spiral similarity with centre D mapping S,X, Y,O1 to S ′′, X ′′, Y ′′, O′′1 . From these,
we see that there is a spiral similarity taking the corresponding points S, S ′, S ′′ to points
O1, O

′
1, O

′′
1 . In particular, O1, O

′
1, O

′′
1 are collinear.
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A

B C

H
OD

SX

Y

P M

S ′S ′′

X ′

Y ′

X ′′

Y ′′

O1

O′1

O′′1

It now suffices to show that O1 lies on the perpendicular bisector of PM for two special
cases.

Firstly, we take S to be the midpoint of AH. Then X and Y are the feet of altitudes from
C and B respectively. It is well-known that the circumcircle of triangle XSY is the nine-point
circle of triangle ABC. Then O1 is the nine-point centre and O1P = O1M . Indeed, P and
M also lies on the nine-point circle.

Secondly, we take S ′ to be the midpoint of AO. Then X ′ and Y ′ are the midpoints of
AB and AC respectively. Then X ′Y ′//BC. Clearly, S ′ lies on the perpendicular bisector
of PM . This shows the perpendicular bisectors of X ′Y ′ and PM coincide. Hence, we must
have O′1P = O′1M .

A

B C

H O

P M

S

X

Y

O1

A

B C

H

O

P M

S ′

X ′ Y ′
O′1
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G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

Solution 1.

A

B
C

D

E

F

P

MX

Y

Q

Z

B′

S

Let ω1 be the circumcircle of triangle ABC. We first prove that Y lies on ω1. Let Y ′ be
the point on ray MD such that MY ′ ·MD = MA2. Then triangles MAY ′ and MDA are
oppositely similar. Since MC2 = MA2 = MY ′ ·MD, triangles MCY ′ and MDC are also
oppositely similar. Therefore, using directed angles, we have

]AY ′C = ]AY ′M + ]MY ′C = ]MAD + ]DCM = ]CDA = ]ABC

so that Y ′ lies on ω1.
Let Z be the intersection point of lines BC and AD. Since ]PDZ = ]PBC = ]PBZ,

point Z lies on ω. In addition, from ]Y ′BZ = ]Y ′BC = ]Y ′AC = ]Y ′AM = ]Y ′DZ, we
also know that Y ′ lies on ω. Note that ∠ADC is acute implies MA 6= MD so MY ′ 6= MD.
Therefore, Y ′ is the second intersection of DM and ω. Then Y ′ = Y and hence Y lies on ω1.

Next, by the Angle Bisector Theorem and the similar triangles, we have

FA

FC
=
AD

CD
=
AD

AM
· CM
CD

=
Y A

YM
· YM
Y C

=
Y A

Y C
.

Hence, FY is the internal angle bisector of ∠AY C.
Let B′ be the second intersection of the internal angle bisector of ∠CBA and ω1. Then

B′ is the midpoint of arc AC not containing B. Therefore, Y B′ is the external angle bisector
of ∠AY C, so that B′Y ⊥ FY .
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Denote by l the line through P parallel to AC. Suppose l meets line B′Y at S. From

]PSY = ∠(AC,B′Y ) = ]ACY + ]CY B′ = ]ACY + ]CAB′ = ]ACY + ]B′CA

= ]B′CY = ]B′BY = ]PBY,

the point S lies on ω. Similarly, the line through X perpendicular to XE also passes through
the second intersection of l and ω, which is the point S. From QY ⊥ Y S and QX ⊥ XS,
point Q lies on ω and QS is a diameter of ω. Therefore, PQ ⊥ PS so that PQ ⊥ AC.

Solution 2. Denote by ω1 and ω2 the circumcircles of triangles ABC and ADC respectively.
Since ∠ABC = ∠ADC, we know that ω1 and ω2 are symmetric with respect to the midpoint
M of AC.

Firstly, we show that X lies on ω2. Let X1 be the second intersection of ray MB and
ω2 and X ′ be its symmetric point with respect to M . Then X ′ lies on ω1 and X ′AX1C is a
parallelogram. Hence, we have

]DX1B = ]DX1A+ ]AX1B = ]DCA+ ]AX1X
′ = ]DCA+ ]CX ′X1

= ]DCA+ ]CAB = ∠(CD,AB).

A

B

C

D
E

F

P

M

X

Y
Q

X ′

M1M2
B′ D′

Also, we have

]DPB = ]PDC + ∠(CD,AB) + ]ABP = ∠(CD,AB).

These yield ]DX1B = ]DPB and hence X1 lies on ω. It follows that X1 = X and X lies
on ω2. Similarly, Y lies on ω1.
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Next, we prove that Q lies on ω. Suppose the perpendicular bisector of AC meet ω1 at B′

and M1 and meet ω2 at D′ and M2, so that B,M1 and D′ lie on the same side of AC. Note
that B′ lies on the angle bisector of ∠ABC and similarly D′ lies on DP .

If we denote the area of W1W2W3 by [W1W2W3], then

BA ·X ′A
BC ·X ′C

=
1
2
BA ·X ′A sin∠BAX ′

1
2
BC ·X ′C sin∠BCX ′

=
[BAX ′]

[BCX ′]
=
MA

MC
= 1.

As BE is the angle bisector of ∠ABC, we have

EA

EC
=
BA

BC
=
X ′C

X ′A
=
XA

XC
.

Therefore, XE is the angle bisector of ∠AXC, so that M2 lies on the line joining X,E,Q.
Analogously, M1, F,Q, Y are collinear. Thus,

]XQY = ]M2QM1 = ]QM2M1 + ]M2M1Q = ]XM2D
′ + ]B′M1Y

= ]XDD′ + ]B′BY = ]XDP + ]PBY = ]XBP + ]PBY = ]XBY,

which implies Q lies on ω.
Finally, as M1 and M2 are symmetric with respect to M , the quadrilateral X ′M2XM1 is

a parallelogram. Consequently,

]XQP = ]XBP = ]X ′BB′ = ]X ′M1B
′ = ]XM2M1.

This shows QP//M2M1. As M2M1 ⊥ AC, we get QP ⊥ AC.

Solution 3. We first state two results which will be needed in our proof.

• Claim 1. In 4X ′Y ′Z ′ with X ′Y ′ 6= X ′Z ′, let N ′ be the midpoint of Y ′Z ′ and W ′ be the
foot of internal angle bisector from X ′. Then tan2]W ′X ′Z ′ = tan]N ′X ′W ′ tan]Z ′W ′X ′.

Proof.

X ′

Y ′ Z ′N ′ W ′

Without loss of generality, assume X ′Y ′ > X ′Z ′. Then W ′ lies between N ′ and Z ′.
The signs of both sides agree so it suffices to establish the relation for ordinary angles. Let
∠W ′X ′Z ′ = α, ∠N ′X ′W ′ = β and ∠Z ′W ′X ′ = γ. We have

sin (γ − α)

sin (α− β)
=
N ′X ′

N ′Y ′
=
N ′X ′

N ′Z ′
=

sin (γ + α)

sin (α + β)
.
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This implies

tan γ − tanα

tan γ + tanα
=

sin γ cosα− cos γ sinα

sin γ cosα + cos γ sinα
=

sinα cos β − cosα sin β

sinα cos β + cosα sin β
=

tanα− tan β

tanα + tan β
.

Expanding and simplifying, we get the desired result tan2 α = tan β tan γ.

• Claim 2. Let A′B′C ′D′ be a quadrilateral inscribed in circle Γ. Let diagonals A′C ′ and
B′D′ meet at E ′, and F ′ be the intersection of lines A′B′ and C ′D′. Let M ′ be the midpoint
of E ′F ′. Then the power of M ′ with respect to Γ is equal to (M ′E ′)2.

Proof.

F ′

B′

A′

C ′

D′

E ′

M ′

O′ F1

Let O′ be the centre of Γ and let Γ′ be the circle with centre M ′ passing through E ′. Let
F1 be the inversion image of F ′ with respect to Γ. It is well-known that E ′ lies on the polar
of F ′ with respect to Γ. This shows E ′F1 ⊥ O′F ′ and hence F1 lies on Γ′. It follows that the
inversion image of Γ′ with respect to Γ is Γ′ itself. This shows Γ′ is orthogonal to Γ, and thus
the power of M ′ with respect to Γ is the square of radius of Γ′, which is (M ′E ′)2.

We return to the main problem. Let Z be the intersection of lines AD and BC, and W
be the intersection of lines AB and CD. Since ]PDZ = ]PBC = ]PBZ, point Z lies on
ω. Similarly, W lies on ω. Applying Claim 2 to the cyclic quadrilateral ZBDW , we know
that the power of M with respect to ω is MA2. Hence, MX ·MB = MA2.

Suppose the line through B perpendicular to BE meets line AC at T . Then BE and
BT are the angle bisectors of ∠CBA. This shows (T,E;A,C) is harmonic. Thus, we have
ME ·MT = MA2 = MX ·MB. It follows that E, T,B,X are concyclic.
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A

B C

D

E
F

P

M

X

Y

Q

Z

W

T

P ′, Q′

The result is trivial for the special case AD = CD since P,Q lie on the perpendicular
bisector of AC in that case. Similarly, the case AB = CB is trivial. It remains to consider
the general cases where we can apply Claim 1 in the latter part of the proof.

Let the projections from P and Q to AC be P ′ and Q′ respectively. Then PQ ⊥ AC if
and only if P ′ = Q′ if and only if EP ′

FP ′
= EQ′

FQ′
in terms of directed lengths. Note that

EP ′

FP ′
=

tan]EFP
tan]FEP

=
tan]AFD
tan]AEB

.

Next, we have EQ′

FQ′
= tan]EFQ

tan]FEQ where ]FEQ = ]TEX = ]TBX = π
2

+ ]EBM and by
symmetry ]EFQ = π

2
+ ]FDM . Combining all these, it suffices to show

tan]AFD
tan]AEB

=
tan]MBE

tan]MDF
.

We now apply Claim 1 twice to get

tan]AFD tan]MDF = tan2]FDC = tan2]EBA = tan]MBE tan]AEB.

The result then follows.
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G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

Solution 1.

(a) Let A′ be the reflection of A in BC and let M be the second intersection of line AI
and the circumcircle Γ of triangle ABC. As triangles ABA′ and AOC are isosceles with
∠ABA′ = 2∠ABC = ∠AOC, they are similar to each other. Also, triangles ABIA and
AIC are similar. Therefore we have

AA′

AIA
=
AA′

AB
· AB
AIA

=
AC

AO
· AI
AC

=
AI

AO
.

Together with ∠A′AIA = ∠IAO, we find that triangles AA′IA and AIO are similar.

A

B C

IA

I

I ′A

P

O

X

Y

M

A′

Z

T

D

Denote by P ′ the intersection of line AP and line OI. Using directed angles, we have

]MAP ′ = ]I ′AAIA = ]I ′AAA
′ − ]IAAA

′ = ]AA′IA − ∠(AM,OM)

= ]AIO − ]AMO = ]MOP ′.

This shows M,O,A, P ′ are concyclic.
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Denote by R and r the circumradius and inradius of triangle ABC. Then

IP ′ =
IA · IM
IO

=
IO2 −R2

IO

is independent of A. Hence, BP also meets line OI at the same point P ′ so that P ′ = P ,
and P lies on OI.

(b) By Poncelet’s Porism, the other tangents to the incircle of triangle ABC from X and Y
meet at a point Z on Γ. Let T be the touching point of the incircle to XY , and let D be
the midpoint of XY . We have

OD = IT · OP
IP

= r

Ç
1 +

OI

IP

å
= r

Ç
1 +

OI2

OI · IP

å
= r

Ç
1 +

R2 − 2Rr

R2 − IO2

å
= r

Ç
1 +

R2 − 2Rr

2Rr

å
=
R

2
=
OX

2
.

This shows ∠XZY = 60◦ and hence ∠XIY = 120◦.

Solution 2.

(a) Note that triangles AIBC and IABC are similar since their corresponding interior angles
are equal. Therefore, the four triangles AI ′BC, AIBC, IABC and I ′ABC are all similar.
From4AI ′BC ∼ 4I ′ABC, we get4AI ′AC ∼ 4I ′BBC. From ]ABP = ]I ′BBC = ]AI ′AC
and ]BAP = ]I ′AAC, the triangles ABP and AI ′AC are directly similar.

A

B C

IA

I

I ′A IB

I ′B

P

O

X
Y

A′

DT

Consider the inversion with centre A and radius
√
AB · AC followed by the reflection

in AI. Then B and C are mapped to each other, and I and IA are mapped to each other.
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From the similar triangles obtained, we have AP · AI ′A = AB · AC so that P is mapped
to I ′A under the transformation. In addition, line AO is mapped to the altitude from A,
and hence O is mapped to the reflection of A in BC, which we call point A′. Note that
AA′IAI

′
A is an isosceles trapezoid, which shows it is inscribed in a circle. The preimage

of this circle is a straight line, meaning that O, I, P are collinear.

(b) Denote by R and r the circumradius and inradius of triangle ABC. Note that by the
above transformation, we have 4APO ∼ 4AA′I ′A and 4AA′IA ∼ 4AIO. Therefore, we
find that

PO = A′I ′A ·
AO

AI ′A
= AIA ·

AO

A′IA
=
AIA
A′IA

· AO =
AO

IO
· AO.

This shows PO · IO = R2, and it follows that P and I are mapped to each other under
the inversion with respect to the circumcircle Γ of triangle ABC. Then PX · PY , which
is the power of P with respect to Γ, equals PI ·PO. This yields X, I,O, Y are concyclic.

Let T be the touching point of the incircle to XY , and let D be the midpoint of XY .
Then

OD = IT · PO
PI

= r · PO

PO − IO
= r · R2

R2 − IO2
= r · R

2

2Rr
=
R

2
.

This shows ∠DOX = 60◦ and hence ∠XIY = ∠XOY = 120◦.

Comment. A simplification of this problem is to ask part (a) only. Note that the question in
part (b) implicitly requires P to lie on OI, or otherwise the angle is not uniquely determined
as we can find another tangent from P to the incircle.
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G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.

Solution. Without loss of generality, assume α = ∠BAC 6 β = ∠CBA 6 γ = ∠ACB.
Denote by a, b, c the lengths of BC,CA,AB respectively. We first show that triangle A1B1C1

is acute.
Choose points D and E on side BC such that B1D//AB and B1E is the internal angle

bisector of ∠BB1C. As ∠B1DB = 180◦ − β is obtuse, we have BB1 > B1D. Thus,

BE

EC
=
BB1

B1C
>
DB1

B1C
=
BA

AC
=
BA1

A1C
.

Therefore, BE > BA1 and 1
2
∠BB1C = ∠BB1E > ∠BB1A1. Similarly, 1

2
∠BB1A > ∠BB1C1.

It follows that

∠A1B1C1 = ∠BB1A1 + ∠BB1C1 <
1

2
(∠BB1C + ∠BB1A) = 90◦

is acute. By symmetry, triangle A1B1C1 is acute.
Let BB1 meet A1C1 at F . From α 6 γ, we get a 6 c, which implies

BA1 =
ca

b+ c
6

ac

a+ b
= BC1

and hence ∠BC1A1 6 ∠BA1C1. As BF is the internal angle bisector of ∠A1BC1, this shows
∠B1FC1 = ∠BFA1 6 90◦. Hence, H lies on the same side of BB1 as C1. This shows H lies
inside triangle BB1C1. Similarly, from α 6 β and β 6 γ, we know that H lies inside triangles
CC1B1 and AA1C1.

A

B CA1

B1C1
H

I

DE

F

B′

H ′

I ′

60◦
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As α 6 β 6 γ, we have α 6 60◦ 6 γ. Then ∠BIC 6 120◦ 6 ∠AIB. Firstly, suppose
∠AIC > 120◦.

Rotate points B, I,H through 60◦ about A to B′, I ′, H ′ so that B′ and C lie on different
sides of AB. Since triangle AI ′I is equilateral, we have

AI +BI + CI = I ′I +B′I ′ + IC = B′I ′ + I ′I + IC. (1)

Similarly,
AH +BH + CH = H ′H +B′H ′ +HC = B′H ′ +H ′H +HC. (2)

As ∠AII ′ = ∠AI ′I = 60◦, ∠AI ′B′ = ∠AIB > 120◦ and ∠AIC > 120◦, the quadrilateral
B′I ′IC is convex and lies on the same side of B′C as A.

Next, since H lies inside triangle ACC1, H lies outside B′I ′IC. Also, H lying inside
triangle ABI implies H ′ lies inside triangle AB′I ′. This shows H ′ lies outside B′I ′IC and
hence the convex quadrilateral B′I ′IC is contained inside the quadrilateral B′H ′HC. It
follows that the perimeter of B′I ′IC cannot exceed the perimeter of B′H ′HC. From (1) and
(2), we conclude that

AH +BH + CH > AI +BI + CI.

For the case ∠AIC < 120◦, we can rotate B, I,H through 60◦ about C to B′, I ′, H ′ so
that B′ and A lie on different sides of BC. The proof is analogous to the previous case and
we still get the desired inequality.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)). (1)

Answer.

• P (x) = c where 1 6 c 6 9 is an integer; or

• P (x) = x.

Solution 1. We consider three cases according to the degree of P .

• Case 1. P (x) is a constant polynomial.
Let P (x) = c where c is an integer constant. Then (1) becomes S(c) = c. This holds if

and only if 1 6 c 6 9.

• Case 2. degP = 1.
We have the following observation. For any positive integers m,n, we have

S(m+ n) 6 S(m) + S(n), (2)

and equality holds if and only if there is no carry in the addition m+ n.
Let P (x) = ax+ b for some integers a, b where a 6= 0. As P (n) is positive for large n, we

must have a > 1. The condition (1) becomes S(an+ b) = aS(n) + b for all n > 2016. Setting
n = 2025 and n = 2020 respectively, we get

S(2025a+ b)− S(2020a+ b) = (aS(2025) + b)− (aS(2020) + b) = 5a.

On the other hand, (2) implies

S(2025a+ b) = S((2020a+ b) + 5a) 6 S(2020a+ b) + S(5a).

These give 5a 6 S(5a). As a > 1, this holds only when a = 1, in which case (1) reduces to
S(n+ b) = S(n) + b for all n > 2016. Then we find that

S(n+ 1 + b)− S(n+ b) = (S(n+ 1) + b)− (S(n) + b) = S(n+ 1)− S(n). (3)

If b > 0, we choose n such that n+ 1 + b = 10k for some sufficiently large k. Note that all
the digits of n + b are 9’s, so that the left-hand side of (3) equals 1 − 9k. As n is a positive
integer less than 10k − 1, we have S(n) < 9k. Therefore, the right-hand side of (3) is at least
1− (9k − 1) = 2− 9k, which is a contradiction.

The case b < 0 can be handled similarly by considering n + 1 to be a large power of 10.
Therefore, we conclude that P (x) = x, in which case (1) is trivially satisfied.
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• Case 3. degP > 2.
Suppose the leading term of P is adn

d where ad 6= 0. Clearly, we have ad > 0. Consider
n = 10k − 1 in (1). We get S(P (n)) = P (9k). Note that P (n) grows asymptotically as fast
as nd, so S(P (n)) grows asymptotically as no faster than a constant multiple of k. On the
other hand, P (9k) grows asymptotically as fast as kd. This shows the two sides of the last
equation cannot be equal for sufficiently large k since d > 2.

Therefore, we conclude that P (x) = c where 1 6 c 6 9 is an integer, or P (x) = x.

Solution 2. Let P (x) = adx
d + ad−1x

d−1 + · · ·+ a0. Clearly ad > 0. There exists an integer
m > 1 such that |ai| < 10m for all 0 6 i 6 d. Consider n = 9 × 10k for a sufficiently large
integer k in (1). If there exists an index 0 6 i 6 d−1 such that ai < 0, then all digits of P (n)
in positions from 10ik+m+1 to 10(i+1)k−1 are all 9’s. Hence, we have S(P (n)) > 9(k −m− 1).
On the other hand, P (S(n)) = P (9) is a fixed constant. Therefore, (1) cannot hold for large
k. This shows ai > 0 for all 0 6 i 6 d− 1.

Hence, P (n) is an integer formed by the nonnegative integers ad × 9d, ad−1 × 9d−1, . . . , a0
by inserting some zeros in between. This yields

S(P (n)) = S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0).

Combining with (1), we have

S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0) = P (9) = ad × 9d + ad−1 × 9d−1 + · · ·+ a0.

As S(m) 6 m for any positive integer m, with equality when 1 6 m 6 9, this forces each
ai × 9i to be a positive integer between 1 and 9. In particular, this shows ai = 0 for i > 2
and hence d 6 1. Also, we have a1 6 1 and a0 6 9. If a1 = 1 and 1 6 a0 6 9, we take
n = 10k + (10− a0) for sufficiently large k in (1). This yields a contradiction since

S(P (n)) = S(10k + 10) = 2 6= 11 = P (11− a0) = P (S(n)).

The zero polynomial is also rejected since P (n) is positive for large n. The remaining candi-
dates are P (x) = x or P (x) = a0 where 1 6 a0 6 9, all of which satisfy (1), and hence are
the only solutions.
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N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

Answer. All composite numbers together with 2.

Solution. In this solution, we always use pi to denote primes congruent to 1 mod 3, and use
qj to denote primes congruent to 2 mod 3. When we express a positive integer m using its
prime factorization, we also include the special case m = 1 by allowing the exponents to be
zeros. We first compute τ1(m) for a positive integer m.

• Claim. Let m = 3xpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt be the prime factorization of m. Then

τ1(m) =
s∏
i=1

(ai + 1)

1

2

t∏
j=1

(bj + 1)

 . (1)

Proof. To choose a divisor of m congruent to 1 mod 3, it cannot have the prime divisor 3,
while there is no restriction on choosing prime factors congruent to 1 mod 3. Also, we have
to choose an even number of prime factors (counted with multiplicity) congruent to 2 mod 3.

If
∏t
j=1 (bj + 1) is even, then we may assume without loss of generality b1 + 1 is even. We

can choose the prime factors q2, q3, . . . , qt freely in
∏t
j=2 (bj + 1) ways. Then the parity of

the number of q1 is uniquely determined, and hence there are 1
2
(b1 + 1) ways to choose the

exponent of q1. Hence (1) is verified in this case.
If
∏t
j=1 (bj + 1) is odd, we use induction on t to count the number of choices. When

t = 1, there are d b1+1
2
e choices for which the exponent is even and b b1+1

2
c choices for which

the exponent is odd. For the inductive step, we find that there are1

2

t−1∏
j=1

(bj + 1)

 ·
¢
bt + 1

2

•
+

1

2

t−1∏
j=1

(bj + 1)

 · úbt + 1

2

ü
=

1

2

t∏
j=1

(bj + 1)


choices with an even number of prime factors and hence b1

2

∏t
j=1 (bj + 1)c choices with an odd

number of prime factors. Hence (1) is also true in this case.

Let n = 3x2y5zpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt . Using the well-known formula for computing the

divisor function, we get

τ(10n) = (x+ 1)(y + 2)(z + 2)
s∏
i=1

(ai + 1)
t∏

j=1

(bj + 1). (2)

By the Claim, we have

τ1(10n) =
s∏
i=1

(ai + 1)

1

2
(y + 2)(z + 2)

t∏
j=1

(bj + 1)

 . (3)
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If c = (y + 2)(z + 2)
∏t
j=1 (bj + 1) is even, then (2) and (3) imply

τ(10n)

τ1(10n)
= 2(x+ 1).

In this case τ(10n)
τ1(10n)

can be any even positive integer as x runs through all nonnegative integers.

If c is odd, which means y, z are odd and each bj is even, then (2) and (3) imply

τ(10n)

τ1(10n)
=

2(x+ 1)c

c+ 1
. (4)

For this to be an integer, we need c+ 1 divides 2(x+ 1) since c and c+ 1 are relatively prime.
Let 2(x+ 1) = k(c+ 1). Then (4) reduces to

τ(10n)

τ1(10n)
= kc = k(y + 2)(z + 2)

t∏
j=1

(bj + 1). (5)

Noting that y, z are odd, the integers y + 2 and z + 2 are at least 3. This shows the integer
in this case must be composite. On the other hand, for any odd composite number ab with
a, b > 3, we may simply take n = 3

ab−1
2 · 2a−2 · 5b−2 so that τ(10n)

τ1(10n)
= ab from (5).

We conclude that the fraction can be any even integer or any odd composite number.
Equivalently, it can be 2 or any composite number.
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N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

Answer. 6.

Solution. We have the following observations.

(i) (P (n), P (n+ 1)) = 1 for any n.

We have (P (n), P (n + 1)) = (n2 + n + 1, n2 + 3n + 3) = (n2 + n + 1, 2n + 2). Noting
that n2 + n+ 1 is odd and (n2 + n+ 1, n+ 1) = (1, n+ 1) = 1, the claim follows.

(ii) (P (n), P (n+ 2)) = 1 for n 6≡ 2 (mod 7) and (P (n), P (n+ 2)) = 7 for n ≡ 2 (mod 7).

From (2n+7)P (n)−(2n−1)P (n+2) = 14 and the fact that P (n) is odd, (P (n), P (n+2))
must be a divisor of 7. The claim follows by checking n ≡ 0, 1, . . . , 6 (mod 7) directly.

(iii) (P (n), P (n+ 3)) = 1 for n 6≡ 1 (mod 3) and 3|(P (n), P (n+ 3)) for n ≡ 1 (mod 3).

From (n+5)P (n)−(n−1)P (n+3) = 18 and the fact that P (n) is odd, (P (n), P (n+3))
must be a divisor of 9. The claim follows by checking n ≡ 0, 1, 2 (mod 3) directly.

Suppose there exists a fragrant set with at most 5 elements. We may assume it contains
exactly 5 elements P (a), P (a+ 1), . . . , P (a+ 4) since the following argument also works with
fewer elements. Consider P (a+ 2). From (i), it is relatively prime to P (a+ 1) and P (a+ 3).
Without loss of generality, assume (P (a), P (a + 2)) > 1. From (ii), we have a ≡ 2 (mod 7).
The same observation implies (P (a + 1), P (a + 3)) = 1. In order that the set is fragrant,
(P (a), P (a+ 3)) and (P (a+ 1), P (a+ 4)) must both be greater than 1. From (iii), this holds
only when both a and a+ 1 are congruent to 1 mod 3, which is a contradiction.

It now suffices to construct a fragrant set of size 6. By the Chinese Remainder Theorem,
we can take a positive integer a such that

a ≡ 7 (mod 19), a+ 1 ≡ 2 (mod 7), a+ 2 ≡ 1 (mod 3).

For example, we may take a = 197. From (ii), both P (a + 1) and P (a + 3) are divisible
by 7. From (iii), both P (a + 2) and P (a + 5) are divisible by 3. One also checks from
19|P (7) = 57 and 19|P (11) = 133 that P (a) and P (a+ 4) are divisible by 19. Therefore, the
set {P (a), P (a+ 1), . . . , P (a+ 5)} is fragrant.

Therefore, the smallest size of a fragrant set is 6.

Comment. “Fragrant Harbour” is the English translation of “Hong Kong”.
A stronger version of this problem is to show that there exists a fragrant set of size k for

any k > 6. We present a proof here.
For each even positive integer m which is not divisible by 3, since m2 + 3 ≡ 3 (mod 4),

we can find a prime pm ≡ 3 (mod 4) such that pm|m2 + 3. Clearly, pm > 3.
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If b = 2t > 6, we choose a such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for each 1 6 m 6 b
with m ≡ 2, 4 (mod 6). For 0 6 r 6 t and 3|r, we have a + t ± r ≡ 1 (mod 3) so that
3|P (a+ t± r). For 0 6 r 6 t and (r, 3) = 1, we have

4P (a+ t± r) ≡ (−1± 2r)2 + 2(−1± 2r) + 4 = 4r2 + 3 ≡ 0 (mod p2r).

Hence, {P (a), P (a+ 1), . . . , P (a+ b)} is fragrant.
If b = 2t + 1 > 7 (the case b = 5 has been done in the original problem), we choose a

such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for 1 6 m 6 b with m ≡ 2, 4 (mod 6), and that
a + b ≡ 9 (mod 13). Note that a exists by the Chinese Remainder Theorem since pm 6= 13
for all m. The even case shows that {P (a), P (a+ 1), . . . , P (a+ b− 1)} is fragrant. Also, one
checks from 13|P (9) = 91 and 13|P (3) = 13 that P (a + b) and P (a + b− 6) are divisible by
13. The proof is thus complete.
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N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

Solution 1. It is given that
nk +mnl + 1|nk+l − 1. (1)

This implies

nk +mnl + 1|(nk+l − 1) + (nk +mnl + 1) = nk+l + nk +mnl. (2)

We have two cases to discuss.

• Case 1. l > k.
Since (nk +mnl + 1, n) = 1, (2) yields

nk +mnl + 1|nl +mnl−k + 1.

In particular, we get nk + mnl + 1 6 nl + mnl−k + 1. As n > 2 and k > 1, (m − 1)nl is at
least 2(m − 1)nl−k. It follows that the inequality cannot hold when m > 2. For m = 1, the
above divisibility becomes

nk + nl + 1|nl + nl−k + 1.

Note that nl+nl−k+1 < nl+nl+1 < 2(nk+nl+1). Thus we must have nl+nl−k+1 = nk+nl+1
so that l = 2k, which gives the first result.

• Case 2. l < k.
This time (2) yields

nk +mnl + 1|nk + nk−l +m.

In particular, we get nk +mnl + 1 6 nk + nk−l +m, which implies

m 6
nk−l − 1

nl − 1
. (3)

On the other hand, from (1) we may let nk+l − 1 = (nk + mnl + 1)t for some positive
integer t. Obviously, t is less than nl, which means t 6 nl − 1 as it is an integer. Then we
have nk+l − 1 6 (nk +mnl + 1)(nl − 1), which is the same as

m >
nk−l − 1

nl − 1
. (4)

Equations (3) and (4) combine to give m = nk−l−1
nl−1 . As this is an integer, we have l|k − l.

This means l|k and it corresponds to the second result.
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Solution 2. As in Solution 1, we begin with equation (2).

• Case 1. l > k.
Then (2) yields

nk +mnl + 1|nl +mnl−k + 1.

Since 2(nk+mnl+1) > 2mnl+1 > nl+mnl−k+1, it follows that nk+mnl+1 = nl+mnl−k+1,
that is,

m(nl − nl−k) = nl − nk.

If m > 2, then m(nl − nl−k) > 2nl − 2nl−k > 2nl − nl > nl − nk gives a contradiction. Hence
m = 1 and l − k = k, which means m = 1 and l = 2k.

• Case 2. l < k.
Then (2) yields

nk +mnl + 1|nk + nk−l +m.

Since 2(nk+mnl+1) > 2nk+m > nk+nk−l+m, it follows that nk+mnl+1 = nk+nk−l+m.

This gives m = nk−l−1
nl−1 . Note that nl − 1|nk−l − 1 implies l|k − l and hence l|k. The proof is

thus complete.

Comment. Another version of this problem is as follows: let n,m, k and l be positive integers
with n 6= 1 such that k and l do not divide each other. Show that nk + mnl + 1 does not
divide nk+l − 1.



Shortlisted problems 79

N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

Solution 1. We first prove the following preliminary result.

• Claim. For fixed k, let x, y be integers satisfying (1). Then the numbers x1, y1 defined by

x1 =
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
, y1 =

1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
are integers and satisfy (1) (with x, y replaced by x1, y1 respectively).

Proof. Since x1 + y1 = x− y and

x1 =
x2 − xy − 2a

x+ y
= −x+

2(x2 − a)

x+ y
= −x+ 2k(x− y),

both x1 and y1 are integers. Let u = x+ y and v = x− y. The relation (1) can be rewritten
as

u2 − (4k − 2)uv + (v2 − 4a) = 0.

By Vieta’s Theorem, the number z = v2−4a
u

satisfies

v2 − (4k − 2)vz + (z2 − 4a) = 0.

Since x1 and y1 are defined so that v = x1 + y1 and z = x1 − y1, we can reverse the process
and verify (1) for x1, y1.

We first show that B ⊂ A. Take any k ∈ B so that (1) is satisfied for some integers x, y
with 0 6 x <

√
a. Clearly, y 6= 0 and we may assume y is positive. Since a is not a square,

we have k > 1. Hence, we get 0 6 x < y <
√
a. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Also, we have

x1 > −
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
=

2a+ x(y − x)

x+ y
>

2a

x+ y
>
√
a.

This implies k ∈ A and hence B ⊂ A.
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Next, we shall show that A ⊂ B. Take any k ∈ A so that (1) is satisfied for some integers
x, y with x >

√
a. Again, we may assume y is positive. Among all such representations of k,

we choose the one with smallest x+ y. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Since k > 1, we get x > y >
√
a. Therefore,

we have y1 >
4a
x+y

> 0 and 4a
x+y

< x+ y. It follows that

x1 + y1 6 max

®
x− y, 4a− (x− y)2

x+ y

´
< x+ y.

If x1 >
√
a, we get a contradiction due to the minimality of x + y. Therefore, we must have

0 6 x1 <
√
a, which means k ∈ B so that A ⊂ B.

The two subset relations combine to give A = B.

Solution 2. The relation (1) is equivalent to

ky2 − (k − 1)x2 = a. (2)

Motivated by Pell’s Equation, we prove the following, which is essentially the same as the
Claim in Solution 1.

• Claim. If (x0, y0) is a solution to (2), then ((2k − 1)x0 ± 2ky0, (2k − 1)y0 ± 2(k − 1)x0) is
also a solution to (2).

Proof. We check directly that

k((2k − 1)y0 ± 2(k − 1)x0)
2 − (k − 1)((2k − 1)x0 ± 2ky0)

2

= (k(2k − 1)2 − (k − 1)(2k)2)y20 + (k(2(k − 1))2 − (k − 1)(2k − 1)2)x20
= ky20 − (k − 1)x20 = a.

If (2) is satisfied for some 0 6 x <
√
a and nonnegative integer y, then clearly (1) implies

y > x. Also, we have k > 1 since a is not a square number. By the Claim, consider another
solution to (2) defined by

x1 = (2k − 1)x+ 2ky, y1 = (2k − 1)y + 2(k − 1)x.

It satisfies x1 > (2k − 1)x + 2k(x + 1) = (4k − 1)x + 2k > x. Then we can replace the old
solution by a new one which has a larger value in x. After a finite number of replacements,
we must get a solution with x >

√
a. This shows B ⊂ A.

If (2) is satisfied for some x >
√
a and nonnegative integer y, by the Claim we consider

another solution to (2) defined by

x1 = |(2k − 1)x− 2ky|, y1 = (2k − 1)y − 2(k − 1)x.
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From (2), we get
√
ky >

√
k − 1x. This implies ky >

»
k(k − 1)x > (k − 1)x and hence

(2k− 1)x− 2ky < x. On the other hand, the relation (1) implies x > y. Then it is clear that
(2k− 1)x− 2ky > −x. These combine to give x1 < x, which means we have found a solution
to (2) with x having a smaller absolute value. After a finite number of steps, we shall obtain
a solution with 0 6 x <

√
a. This shows A ⊂ B.

The desired result follows from B ⊂ A and A ⊂ B.

Solution 3. It suffices to show A ∪ B is a subset of A ∩ B. We take any k ∈ A ∪ B, which
means there exist integers x, y satisfying (1). Since a is not a square, it follows that k 6= 1.
As in Solution 2, the result follows readily once we have proved the existence of a solution
(x1, y1) to (1) with |x1| > |x|, and, in case of x >

√
a, another solution (x2, y2) with |x2| < |x|.

Without loss of generality, assume x, y > 0. Let u = x + y and v = x − y. Then u > v
and (1) becomes

k =
(u+ v)2 − 4a

4uv
. (3)

This is the same as
v2 + (2u− 4ku)v + u2 − 4a = 0.

Let v1 = 4ku−2u− v. Then u+ v1 = 4ku−u− v > 8u−u− v > u+ v. By Vieta’s Theorem,
v1 satisfies

v21 + (2u− 4ku)v1 + u2 − 4a = 0.

This gives k = (u+v1)2−4a
4uv1

. As k is an integer, u+ v1 must be even. Therefore, x1 = u+v1
2

and

y1 = v1−u
2

are integers. By reversing the process, we can see that (x1, y1) is a solution to (1),
with x1 = u+v1

2
> u+v

2
= x > 0. This completes the first half of the proof.

Suppose x >
√
a. Then u+ v > 2

√
a and (3) can be rewritten as

u2 + (2v − 4kv)u+ v2 − 4a = 0.

Let u2 = 4kv − 2v − u. By Vieta’s Theorem, we have uu2 = v2 − 4a and

u22 + (2v − 4kv)u2 + v2 − 4a = 0. (4)

By u > 0, u + v > 2
√
a and (3), we have v > 0. If u2 > 0, then vu2 6 uu2 = v2 − 4a < v2.

This shows u2 < v 6 u and 0 < u2 + v < u+ v. If u2 < 0, then (u2 + v) + (u+ v) = 4kv > 0
and u2 + v < u+ v imply |u2 + v| < u+ v. In any case, since u2 + v is even from (4), we can
define x2 = u2+v

2
and y2 = u2−v

2
so that (1) is satisfied with |x2| < x, as desired. The proof is

thus complete.
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N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).

Answer. f(n) = n2 for any n ∈ N.

Solution. It is given that

f(m) + f(n)−mn|mf(m) + nf(n). (1)

Taking m = n = 1 in (1), we have 2f(1)− 1|2f(1). Then 2f(1)− 1|2f(1)− (2f(1)− 1) = 1
and hence f(1) = 1.

Let p > 7 be a prime. Taking m = p and n = 1 in (1), we have f(p)− p+ 1|pf(p) + 1 and
hence

f(p)− p+ 1|pf(p) + 1− p(f(p)− p+ 1) = p2 − p+ 1.

If f(p)− p+ 1 = p2 − p+ 1, then f(p) = p2. If f(p)− p+ 1 6= p2 − p+ 1, as p2 − p+ 1 is an
odd positive integer, we have p2 − p+ 1 > 3(f(p)− p+ 1), that is,

f(p) 6
1

3
(p2 + 2p− 2). (2)

Taking m = n = p in (1), we have 2f(p)− p2|2pf(p). This implies

2f(p)− p2|2pf(p)− p(2f(p)− p2) = p3.

By (2) and f(p) > 1, we get

−p2 < 2f(p)− p2 6 2

3
(p2 + 2p− 2)− p2 < −p

since p > 7. This contradicts the fact that 2f(p)− p2 is a factor of p3. Thus we have proved
that f(p) = p2 for all primes p > 7.

Let n be a fixed positive integer. Choose a sufficiently large prime p. Consider m = p in
(1). We obtain

f(p) + f(n)− pn|pf(p) + nf(n)− n(f(p) + f(n)− pn) = pf(p)− nf(p) + pn2.

As f(p) = p2, this implies p2−pn+f(n)|p(p2−pn+n2). As p is sufficiently large and n is fixed,
p cannot divide f(n), and so (p, p2−pn+f(n)) = 1. It follows that p2−pn+f(n)|p2−pn+n2

and hence
p2 − pn+ f(n)|(p2 − pn+ n2)− (p2 − pn+ f(n)) = n2 − f(n).

Note that n2− f(n) is fixed while p2− pn+ f(n) is chosen to be sufficiently large. Therefore,
we must have n2 − f(n) = 0 so that f(n) = n2 for any positive integer n.

Finally, we check that when f(n) = n2 for any positive integer n, then

f(m) + f(n)−mn = m2 + n2 −mn

and
mf(m) + nf(n) = m3 + n3 = (m+ n)(m2 + n2 −mn).

The latter expression is divisible by the former for any positive integers m,n. This shows
f(n) = n2 is the only solution.
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and the squares of its side lengths are
all divisible by n. Prove that 2S is an integer divisible by n.

Solution. Let P = A1A2 . . . Ak and let Ak+i = Ai for i > 1. By the Shoelace Formula, the
area of any convex polygon with integral coordinates is half an integer. Therefore, 2S is an
integer. We shall prove by induction on k > 3 that 2S is divisible by n. Clearly, it suffices to
consider n = pt where p is an odd prime and t > 1.

For the base case k = 3, let the side lengths of P be
√
na,
√
nb,
√
nc where a, b, c are

positive integers. By Heron’s Formula,

16S2 = n2(2ab+ 2bc+ 2ca− a2 − b2 − c2).

This shows 16S2 is divisible by n2. Since n is odd, 2S is divisible by n.
Assume k > 4. If the square of length of one of the diagonals is divisible by n, then

that diagonal divides P into two smaller polygons, to which the induction hypothesis applies.
Hence we may assume that none of the squares of diagonal lengths is divisible by n. As
usual, we denote by νp(r) the exponent of p in the prime decomposition of r. We claim the
following.

• Claim. νp(A1A
2
m) > νp(A1A

2
m+1) for 2 6 m 6 k − 1.

Proof. The case m = 2 is obvious since νp(A1A
2
2) > pt > νp(A1A

2
3) by the condition and the

above assumption.
Suppose νp(A1A

2
2) > νp(A1A

2
3) > · · · > νp(A1A

2
m) where 3 6 m 6 k−1. For the induction

step, we apply Ptolemy’s Theorem to the cyclic quadrilateral A1Am−1AmAm+1 to get

A1Am+1 × Am−1Am + A1Am−1 × AmAm+1 = A1Am × Am−1Am+1,

which can be rewritten as

A1A
2
m+1 × Am−1A2

m = A1A
2
m−1 × AmA2

m+1 + A1A
2
m × Am−1A2

m+1

− 2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1. (1)

From this, 2A1Am−1×AmAm+1×A1Am×Am−1Am+1 is an integer. We consider the component
of p of each term in (1). By the inductive hypothesis, we have νp(A1A

2
m−1) > νp(A1A

2
m). Also,

we have νp(AmA
2
m+1) > pt > νp(Am−1A

2
m+1). These give

νp(A1A
2
m−1 × AmA2

m+1) > νp(A1A
2
m × Am−1A2

m+1). (2)

Next, we have νp(4A1A
2
m−1×AmA2

m+1×A1A
2
m×Am−1A2

m+1) = νp(A1A
2
m−1×AmA2

m+1) +
νp(A1A

2
m × Am−1A2

m+1) > 2νp(A1A
2
m × Am−1A2

m+1) from (2). This implies

νp(2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1) > νp(A1A
2
m × Am−1A2

m+1). (3)

Combining (1), (2) and (3), we conclude that

νp(A1A
2
m+1 × Am−1A2

m) = νp(A1A
2
m × Am−1A2

m+1).

By νp(Am−1A
2
m) > pt > νp(Am−1A

2
m+1), we get νp(A1A

2
m+1) < νp(A1A

2
m). The Claim follows

by induction.
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From the Claim, we get a chain of inequalities

pt > νp(A1A
2
3) > νp(A1A

2
4) > · · · > νp(A1A

2
k) > pt,

which yields a contradiction. Therefore, we can show by induction that 2S is divisible by n.

Comment. The condition that P is cyclic is crucial. As a counterexample, consider the
rhombus with vertices (0, 3), (4, 0), (0,−3), (−4, 0). Each of its squares of side lengths is
divisible by 5, while 2S = 48 is not.

The proposer also gives a proof for the case n is even. One just needs an extra technical
step for the case p = 2.
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N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.

Answer. P (x) = a(rx+ s)d where a, r, s are integers with a 6= 0, r > 1 and (r, s) = 1.

Solution. Let P (x) = adx
d +ad−1x

d−1 + · · ·+a0. Consider the substitution y = dadx+ad−1.
By defining Q(y) = P (x), we find that Q is a polynomial with rational coefficients without
the term yd−1. Let Q(y) = bdy

d + bd−2y
d−2 + bd−3y

d−3 + · · · + b0 and B = max06i6d {|bi|}
(where bd−1 = 0).

The condition shows that for each n > 1, there exist integers y1, y2, . . . , yn such that
1
2
< Q(yi)

Q(yj)
< 2 and Q(yi)

Q(yj)
is the d-th power of a rational number for 1 6 i, j 6 n. Since n

can be arbitrarily large, we may assume all xi’s and hence yi’s are integers larger than some
absolute constant in the following.

By Dirichlet’s Theorem, since d is odd, we can find a sufficiently large prime p such that
p ≡ 2 (mod d). In particular, we have (p − 1, d) = 1. For this fixed p, we choose n to be
sufficiently large. Then by the Pigeonhole Principle, there must be d+1 of y1, y2, . . . , yn which
are congruent mod p. Without loss of generality, assume yi ≡ yj (mod p) for 1 6 i, j 6 d+ 1.
We shall establish the following.

• Claim. Q(yi)
Q(y1)

=
ydi
yd1

for 2 6 i 6 d+ 1.

Proof. Let Q(yi)
Q(y1)

= ld

md where (l,m) = 1 and l,m > 0. This can be rewritten in the expanded
form

bd(m
dydi − ldyd1) = −

d−2∑
j=0

bj(m
dyji − ldy

j
1). (1)

Let c be the common denominator of Q, so that cQ(k) is an integer for any integer k.
Note that c depends only on P and so we may assume (p, c) = 1. Then y1 ≡ yi (mod p)
implies cQ(y1) ≡ cQ(yi) (mod p).

• Case 1. p|cQ(y1).

In this case, there is a cancellation of p in the numerator and denominator of cQ(yi)
cQ(y1)

, so

that md 6 p−1|cQ(y1)|. Noting |Q(y1)| < 2Byd1 as y1 is large, we get

m 6 p−
1
d (2cB)

1
dy1. (2)

For large y1 and yi, the relation 1
2
< Q(yi)

Q(y1)
< 2 implies

1

3
<
ydi
yd1

< 3. (3)

We also have
1

2
<

ld

md
< 2. (4)
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Now, the left-hand side of (1) is

bd(myi − ly1)(md−1yd−1i +md−2yd−2i ly1 + · · ·+ ld−1yd−11 ).

Suppose on the contrary that myi− ly1 6= 0. Then the absolute value of the above expression
is at least |bd|md−1yd−1i . On the other hand, the absolute value of the right-hand side of (1)
is at most

d−2∑
j=0

B(mdyji + ldyj1) 6 (d− 1)B(mdyd−2i + ldyd−21 )

6 (d− 1)B(7mdyd−2i )

6 7(d− 1)B(p−
1
d (2cB)

1
dy1)m

d−1yd−2i

6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i

by using successively (3), (4), (2) and again (3). This shows

|bd|md−1yd−1i 6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i ,

which is a contradiction for large p as bd, B, c, d depend only on the polynomial P . Therefore,
we have myi − ly1 = 0 in this case.

• Case 2. (p, cQ(y1)) = 1.
From cQ(y1) ≡ cQ(yi) (mod p), we have ld ≡ md (mod p). Since (p − 1, d) = 1, we

use Fermat Little Theorem to conclude l ≡ m (mod p). Then p|myi − ly1. Suppose on
the contrary that myi − ly1 6= 0. Then the left-hand side of (1) has absolute value at least
|bd|pmd−1yd−1i . Similar to Case 1, the right-hand side of (1) has absolute value at most

21(d− 1)B(2cB)
1
dmd−1yd−1i ,

which must be smaller than |bd|pmd−1yd−1i for large p. Again this yields a contradiction and
hence myi − ly1 = 0.

In both cases, we find that Q(yi)
Q(y1)

= ld

md =
ydi
yd1

.

From the Claim, the polynomial Q(y1)y
d − yd1Q(y) has roots y = y1, y2, . . . , yd+1. Since

its degree is at most d, this must be the zero polynomial. Hence, Q(y) = bdy
d. This implies

P (x) = ad(x+ ad−1

dad
)d. Let ad−1

dad
= s

r
with integers r, s where r > 1 and (r, s) = 1. Since P has

integer coefficients, we need rd|ad. Let ad = rda. Then P (x) = a(rx+ s)d. It is obvious that
such a polynomial satisfies the conditions.

Comment. In the proof, the use of prime and Dirichlet’s Theorem can be avoided. One can
easily show that each P (xi) can be expressed in the form uvdi where u, vi are integers and u
cannot be divisible by the d-th power of a prime (note that u depends only on P ). By fixing a
large integer q and by choosing a large n, we can apply the Pigeonhole Principle and assume
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x1 ≡ x2 ≡ · · · ≡ xd+1 (mod q) and v1 ≡ v2 ≡ · · · ≡ vd+1 (mod q). Then the remaining proof
is similar to Case 2 of the Solution.

Alternatively, we give another modification of the proof as follows.
We take a sufficiently large n and consider the corresponding positive integers y1, y2, . . . , yn.

For each 2 6 i 6 n, let Q(yi)
Q(y1)

=
ldi
md

i
.

As in Case 1, if there are d indices i such that the integers c|Q(y1)|
md

i
are bounded below by

a constant depending only on P , we can establish the Claim using those yi’s and complete
the proof. Similarly, as in Case 2, if there are d indices i such that the integers |miyi − liy1|
are bounded below, then the proof goes the same. So it suffices to consider the case where
c|Q(y1)|
md

i
6 M and |miyi − liy1| 6 N for all 2 6 i 6 n′ where M,N are fixed constants

and n′ is large. Since there are only finitely many choices for mi and miyi − liy1, by the
Pigeonhole Principle, we can assume without loss of generality mi = m and miyi − liy1 = t
for 2 6 i 6 d+ 2. Then

Q(yi)

Q(y1)
=

ldi
md

=
(myi − t)d

mdyd1

so that Q(y1)(my− t)d−mdyd1Q(y) has roots y = y2, y3, . . . , yd+2. Its degree is at most d and
hence it is the zero polynomial. Therefore, Q(y) = bd

md (my − t)d. Indeed, Q does not have
the term yd−1, which means t should be 0. This gives the corresponding P (x) of the desired
form.

The two modifications of the Solution work equally well when the degree d is even.


