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Problems

Algebra

A1l. Let n be a positive integer and let ai,...,a,_; be arbitrary real numbers. Define the
sequences ug, . . ., U, and v, ..., v, inductively by ug = u; = vg = vy = 1, and
Upy1 = Uk + QpUp_1, Vg1l = Uk + Qp_kUp_1 fork=1,...,n—1.

Prove that u,, = v,.

(France)

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs @ > b and ¢ > d

with a # ¢ or b # d, such that
1

100000

a—b_
c—d

1‘<

(Lithuania)

A3. Let Q. be the set of positive rational numbers. Let f: Q.o — R be a function satisfying
the conditions

f@)fly) = fley) and  flz+y) = f(2) + f(y)
for all x,y € Q=¢. Given that f(a) = a for some rational a > 1, prove that f(z) = x for all
T e Q>O-

(Bulgaria)
A4. Let n be a positive integer, and consider a sequence ap,as,...,a, of positive integers.
Extend it periodically to an infinite sequence ay, as, ... by defining a,,,; = a; for all ¢ > 1. If
G <SWw<--<a,<atn
and
Qg <n+1—1 fori=1,2,...,n,
prove that
a1+---+an<n2.
(Germany)

A5. Let Z-y be the set of all nonnegative integers. Find all the functions f: Z=oy — Zs
satisfying the relation

FF(F) = fln+1) +1

for all n € Z~,.

(Serbia)
AG6. Let m # 0 be an integer. Find all polynomials P(x) with real coefficients such that

(2 —ma? + DP(x + 1)+ (2° + ma® + 1)P(z — 1) = 2(z* — mz + 1) P(x)

for all real numbers z.
(Serbia)
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k& with the following property: Given
any real numbers ay, ...,aq such that a; +as +---+ag=nand 0 <a; < 1fori=1,2,...,d, it
is possible to partition these numbers into & groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k£ such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

() If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

(77) At any moment, he may double the whole family of imons in his lab by creating a copy I’
of each imon I. During this procedure, the two copies I’ and J’' become entangled if and only if
the original imons [ and J are entangled, and each copy I’ becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)
C4. Let n be a positive integer, and let A be a subset of {1,...,n}. An A-partition of n into k
parts is a representation of n as a sum n = a; + - -+ + ag, where the parts aq,...,a; belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set {aj, as, ..., a}.
We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r < k. Prove that any optimal A-partition of n contains at most </6n different parts.

(Germany)

C5. Let r be a positive integer, and let ag, as,... be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n € [m + 1, m + ]
such that

A + Qa1 + -+ Qas = Ay + Apypy + 000+ Qs

Prove that the sequence is periodic, i.e. there exists some p > 1 such that a,,+, = a, for all n > 0.
(India)
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

C7. Let n > 2 be an integer. Consider all circular arrangements of the numbers 0,1, ..., n; the
n + 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 < a,b,c,d < n with a + ¢ = b + d, the chord joining
numbers a and ¢ does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0,1,...,n. Let N be the number of pairs
(x,y) of positive integers such that = + y < n and ged(x,y) = 1. Prove that

M =N +1.

(Russia)

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1/2™ units of ink from the
pot. Player B then picks an integer k and blackens the interval from k/2™ to (k + 1)/2™ (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval [0, 1] is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)
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Geometry

G1l. Let ABC be an acute-angled triangle with orthocenter H, and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C|, respectively. Denote
by w; the circumcircle of BW N, and let X be the point on w; which is diametrically opposite
to W. Analogously, denote by wy the circumcircle of CW M, and let Y be the point on w, which
is diametrically opposite to W. Prove that X, Y and H are collinear.

(Thaliand)

G2. Let w be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by 7" the midpoint of the arc BC' of w not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y, respectively; assume that X and Y lie inside the triangle ABC. The
lines M N and XY intersect at K. Prove that KA = KT.

(Iran)

G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ¢ be the non-obtuse angle of the rhombus. Prove that
¢ < max{£BAC,/ZABC}.
(Serbia)
G4. Let ABC be a triangle with /B > ZC. Let P and Q be two different points on line AC
such that /PBA = ZQBA = ZACB and A is located between P and C. Suppose that there
exists an interior point D of segment B(Q) for which PD = PB. Let the ray AD intersect the circle
ABC at R # A. Prove that QB = QR.
(Georgia)
G5. Let ABCDEF be a convex hexagon with AB = DE, BC = EF, CD = FA, and
LA—/D=/C—-/F =/FE — /B. Prove that the diagonals AD, BE, and C'F are concurrent.
(Ukraine)

G6. Let the excircle of the triangle ABC' lying opposite to A touch its side BC' at the point A;.
Define the points B; and C; analogously. Suppose that the circumcentre of the triangle A; B;C
lies on the circumcircle of the triangle ABC'. Prove that the triangle ABC' is right-angled.

(Russia)
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Number Theory

N1. Let Z., be the set of positive integers. Find all functions f: Z-.o — Z- such that
m? + f(n) | mf(m) +n

for all positive integers m and n.

(Malaysia)
N2. Prove that for any pair of positive integers k£ and n there exist k positive integers
my, Mo, ..., my such that
2k 1 1 1 1
1+ =(1+—)(1+—) - (1+—).
n ma mo mi
(Japan)

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n* + n? + 1 is equal to the largest prime divisor of (n + 1)* + (n + 1)? + 1.

(Belgium,)

N4. Determine whether there exists an infinite sequence of nonzero digits ai, as, as,... and a
positive integer N such that for every integer £ > N, the number ayay_ ... a; is a perfect square.
(Iran)

Nb5. Fix an integer k¥ > 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n > k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m’ with & < m’ < m that is coprime to m. The first
player who cannot move anymore loses.

An integer n > k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n,n’ > k with the property that each prime number p < k divides n if
and only if it divides n’. Prove that either both n and n’ are good or both are bad.

(Italy)
N6. Determine all functions f: Q — Z satisfying
flx)+a\ . /x+a
d ( b =/ < b )
forall z € Q, a € Z, and b € Z~y. (Here, Z~ denotes the set of positive integers.)
(Israel)

NT7. Let v be an irrational positive number, and let m be a positive integer. A pair (a,b) of
positive integers is called good if
albv| — blav| = m.
A good pair (a, b) is called ezcellent if neither of the pairs (a—b,b) and (a,b—a) is good. (As usual,
by |z]| and [z] we denote the integer numbers such that z — 1 < || < z and z < [z] <z + 1.)
Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)
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Solutions

Algebra

Al. Let n be a positive integer and let ai,...,a,_; be arbitrary real numbers. Define the
sequences ug, . . ., U, and v, ..., v, inductively by ug = u; = vg = vy = 1, and
Upy1 = Up + Qpllp_1, Va1l = Uk + Qp_pUk_1 fork=1,....,n—1.

Prove that u,, = v,
(France)
Solution 1. We prove by induction on k that

U = Z Ay - .- G, (1)

0<iy <...<ir<k,
ij+1—ij =2
Note that we have one trivial summand equal to 1 (which corresponds to ¢ = 0 and the empty
sequence, whose product is 1).
For k = 0,1 the sum on the right-hand side only contains the empty product, so (1) holds due

to ug = u; = 1. For k > 1, assuming the result is true for 0,1,..., &k, we have
U1 = Z Ay - .. Q4 + Z Qjy - Ay - G
0<ip <...<it<k, 0<iy<...<it<k—1,
ljp1—i5=2 Tjp1—15=2
= Z a,-l...a,-t+ Z gy oo gy
0<ig<...<ir<k+1, 0<iy<...<ir<k+1,
1j41—15>2, ijp1—12>2,

kg{iq,. iz} kefiq,. . ig}

= Z gy v Qg

0<ip<...<ir<k+1,
ij+1—ij =2

as required.
Applying (1) to the sequence by, ..., b, given by by = a,_ for 1 < k < n, we get

Vi = Z bil e bit = Z iy oo Ay (2)

0<ig<...<ir<k, n>i1>..>i>n—*k,
i]‘+17ij>2 ij*ij+1>2

For k = n the expressions (1) and (2) coincide, so indeed u,, = v,,.
Solution 2. Define recursively a sequence of multivariate polynomials by
Fy=+P =1, Piyi(wy, .o wp) = P(wy, .o 1) + 2 Pea (20, -0 212),
so P, is a polynomial in n — 1 variables for each n > 1. Two easy inductive arguments show that

Unp, :Pn<a17“‘7an71)7 Un:Pn(anfla"'val)a
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so we need to prove P,(z1,...,2p-1) = Py(xy_1,...,21) for every positive integer n. The cases
n = 1,2 are trivial, and the cases n = 3,4 follow from P3(x,y) = 1 + x + y and Py(x,y,2) =
l+z+y+2+az.

Now we proceed by induction, assuming that n > 5 and the claim hold for all smaller cases.
Using F'(a,b) as an abbreviation for Po_p11(%4, ..., %) (where the indices a,...,b can be either
in increasing or decreasing order),

F(n,1) = F(n,2) + 21F(n,3) = F(2,n) + x1F(3,n)
(F(2,n—1)+2,F(2,n—2))+x,(F3,n—1) + 2,F(3,n — 2))
= (F(n—1,2)+2F(n—1,3) + 2,(F(n—2,2) + 21 F(n — 2, 3))
Fn—-1,1)+z,F(n—2,1)=F(1,n—1)+x,F(1,n—2)
= F(1,n),

as we wished to show.

Solution 3. Using matrix notation, we can rewrite the recurrence relation as

Uf+1 _ Wk + apUp—1 _ 1+a, —ap Uy,
Uk41 — Uk ApUK—1 ak —ag Uk — Ug—1
for 1 < k <n—1, and similarly

. . . 1+ Qp—f  —Qp—k
(Uk41; Uk — Ugg1) = (U + QpogUk—1; —An—gUk—1 ) = (V3 Vk—1 — Vg)

Gp—f —Qp—f
1+a, —a
for 1 < k < n — 1. Hence, introducing the 2 x 2 matrices A; = “ o ) Ve have
koo Tk

U U
( Fr > Ak( g > and (Uk+1;vk - Uk+1) = (Uk;vkq - Uk)Anfk-

Uk41 — Uk UL — Up_1
for 1 <k <n—1. Since (u1u_1uo) = ((1)) and (vy;v9 — v1) = (1;0), we get
1
( Unp, ) = An*lAn72 . .Al . < > and (Un;vn—l - Un) = (17()) . ATL*IAn72 .. 'Al'
Up — Up—1 0
It follows that

Unp

) = @0, ") =00 A A () = G- o) () = 00

Comment 1. These sequences are related to the Fibonacci sequence; when a1 = -+ = a,_1 = 1, we
have up = vy = Fj41, the (k + 1)st Fibonacci number. Also, for every positive integer k, the polynomial
Pi(x1,...,25_1) from Solution 2 is the sum of Fj,; monomials.

Comment 2. One may notice that the condition is equivalent to

U a v oy
R _ gy 5 and ML _ gy (:k
U _ v _
k 1+ kla k 1+ nkJrClL
2 n—2
1+...+ 1+... .+ —
14+ a; 1 +ap

so the problem claims that the corresponding continued fractions for u, /u,—1 and v,/v,—1 have the same
numerator.
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Comment 3. An alternative variant of the problem is the following.

Let n be a positive integer and let ay, ..., a,—1 be arbitrary real numbers. Define the sequences
UQy -« -+« 5 Uy a0 Vg, . .., U, inductively by ug = vg =0, up = vy = 1, and
Upt] = QUL + Uk—1, Vg1 = Qp—kVk + Vk—1 fork=1,...,n—1.

Prove that u,, = v,,.
All three solutions above can be reformulated to prove this statement; one may prove

Uy = Uy = Z @iy - Ay, forn >0

0=ip<ii<...<it=n,
ij41—1t; is odd

upy1)  (ar 1 U, o) = (vn: a1
< g ) B <1 0) <Uk1> and - (vke1; %) = (04 V) < 1 0>'

or observe that

Here we have

Uk+1 1
= ap + 1 = lag;ar—1,...,a1]
Uk,

ap_1 + 1

ap—9+ ...+ —

ai

and )
Vk+1
o Ap—f + 1 = [an—k: @n—kt1s- - an-1],
k
Ap—k+1 +
Ap—k+2 + ...+
ap—1

so this alternative statement is equivalent to the known fact that the continued fractions [a,—1; an—2, - . .

and [a1;aq,...,a,—1] have the same numerator.
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A2. Prove that in any set of 2000 distinct real numbers there exist two pairs @ > b and ¢ > d

with a # c or b # d, such that
1

100000

a—b_
c—d

1‘ <
(Lithuania)

Solution. For any set S of n = 2000 distinct real numbers, let D1 < Dy < --- < D,, be the
distances between them, displayed with their multiplicities. Here m = n(n — 1)/2. By rescaling
the numbers, we may assume that the smallest distance D; between two elements of S is Dy = 1.
Let Dy =1 =y —x for z,y € S. Evidently D,, = v — u is the difference between the largest
element v and the smallest element u of S.

If Diy1/D; <1+ 1072 for some ¢ = 1,2,...,m — 1 then the required inequality holds, because
0 < D;;1/D; —1 <1075, Otherwise, the reverse inequality

Diq 1

14
D, 10

holds for each i = 1,2,...,m — 1, and therefore

D, D, Ds D, 1\ !
L == . = > 1 + — .
Dl Dmfl D2 D1 105

v—u=D,, =

Fromm—1=n(n—1)/2—1=1000-1999 — 1 > 19-10°, together with the fact that for all n > 1,
(1+%)n>1+(?)-%=2,weget

1 19-105 1 109\ ¥
_ 19 _ 59 ol0 5
<1+1_05) _<<1+1—05) ) >27=2"-2">500-1000 > 2-10°,

and sov—u=D,, >2-10°.
Since the distance of z to at least one of the numbers u, v is at least (u — v)/2 > 10°, we have

|z — 2| > 10°.

for some z € {u,v}. Since y —x = 1, we have either z >y >z (if z=0v) or y >z > z (if z = u).
If 2>y >z, selecting a = z,b =y,c = z and d = z (so that b # d), we obtain
a—2b zZ—y T —y

1
-1 = —1| = = <1075,
c—d Z—x Z—x Z—x

Otherwise, if y > x > z, we may choose a = y,b = z,¢ =z and d = z (so that a # ¢), and obtain

] B A R ] DN S

c—d T —z r—z T —z

The desired result follows.

Comment. As the solution shows, the numbers 2000 and m appearing in the statement of the problem

may be replaced by any n € Z~q and § > 0 satisfying
5(1 4 o)rn=/2=1 5 9,
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A3. Let Q. be the set of positive rational numbers. Let f: Q.o — R be a function satisfying
the conditions

f(@)f(y) = f(zy), (1)
flx+y) = fx)+ fy) (2)

for all x,y € Q. Given that f(a) = a for some rational a > 1, prove that f(z) = z for all
T € Q>0.

=
=

(Bulgaria)

Solution. Denote by Z- the set of positive integers.
Plugging = = 1, y = a into (1) we get f(1) > 1. Next, by an easy induction on n we get
from (2) that
f(nz) =nf(x) forall neZ.yand x € Q. (3)

In particular, we have
f(n)=nf(l)=n forall neZy. (4)

From (1) again we have f(m/n)f(n) = f(m), so f(g) > 0 for all ¢ € Q.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields
f(x) = f(lz]) = |z >x—1 forall x> 1.
By an easy induction we get from (1) that f(z)" > f(z"), so
flx)" = f(a")>2" -1 = f(z)=Var—1 forallz>1and neZ..
This yields
f(z) = x forevery x > 1. (5)

(Indeed, if z >y > 1 then 2" —y" = (z —y)(z" ' + 2" 2y + -+ y") > n(x —y), so for a large n
we have 2" — 1 > y" and thus f(x) > y.)

Now, (1) and (5) give a” = f(a)" = f(a") = a", so f(a") = a™. Now, for z > 1 let us choose
n € Z~g such that a™ —x > 1. Then by (2) and (5) we get

a" = f(a") = f(x)+ f(a" —x) =22+ (" —x) =a"

and therefore f(x) = x for z > 1. Finally, for every z € Q¢ and every n € Z-, from (1) and (3)
we get

nf(z) = f(n)f(z) = f(nx) = nf(z),
which gives f(nz) = nf(x). Therefore f(m/n) = f(m)/n =m/n for all m,n € Z~,.

Comment. The condition f(a) = a > 1 is essential. Indeed, for b > 1 the function f(x) = bz? satisfies (1)
and (2) for all z,y € Q~¢, and it has a unique fixed point 1/b < 1.
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A4. Let n be a positive integer, and consider a sequence ap,as,...,a, of positive integers.
Extend it periodically to an infinite sequence aq, as, ... by defining a,,,; = a; for all ¢ > 1. If
4 <ay < <ap <ap+n (1)
and
g, <N +1—1 fori=1,2,...,n, (2)
prove that

ay + -+ a, <n’

(Germany)

Solution 1. First, we claim that
a; <n+i1—1 fori=1,2,...,n. (3)
Assume contrariwise that ¢ is the smallest counterexample. From a, > a,_1 = - > a; > n+1

and a,, < n + 17— 1, taking into account the periodicity of our sequence, it follows that
a; cannot be congruent to i, i+ 1,...,n —1,orn (mod n). (4)
Thus our assumption that a; = n + ¢ implies the stronger statement that a; > 2n + 1, which by
a; +n = a, = a; gives a; = n + 1. The minimality of ¢ then yields ¢ = 1, and (4) becomes
contradictory. This establishes our first claim.
In particular we now know that a; < n. If a,, < n, then a; < --- <---a, < n and the desired
inequality holds trivially. Otherwise, consider the number ¢ with 1 <¢ < n — 1 such that

ap <ay<...<aq <n < <...<a,. (5)

Since 1 < a; < n and a,, < n by (2), we have a; <t and hence a,, < n + t. Therefore if for each
positive integer i we let b; be the number of indices j € {t +1,...,n} satisfying a; = n+ i, we have

bl)bg)...}bt>bt+1=0.
Next we claim that a; + b; < n for 1 <¢ < t¢. Indeed, by n +i—1 > a,, and a; < n, each j
with a; > n + i (thus a; > a,,) belongs to {a; + 1,...,n}, and for this reason b; < n — a;.
It follows from the definition of the b;s and (5) that
g1+ ...+ ap <nn—1t)+by + ...+ b
Adding a; + ...+ a; to both sides and using that a; + b; < n for 1 < i < t, we get

ay +ag+ - +a, <nn—t)+nt=n’

as we wished to prove.
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Solution 2. In the first quadrant of an infinite grid, consider the increasing “staircase” obtained
by shading in dark the bottom a; cells of the ith column for 1 < i < n. We will prove that there
are at most n? dark cells.

To do it, consider the n x n square S in the first quadrant with a vertex at the origin. Also
consider the n x n square directly to the left of S. Starting from its lower left corner, shade in light
the leftmost a; cells of the jth row for 1 < j < n. Equivalently, the light shading is obtained by
reflecting the dark shading across the line = y and translating it n units to the left. The figure
below illustrates this construction for the sequence 6,6,6,7,7,7,8,12,12,14.

ai'

nti—l1—

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that
there is such a cell in column 7. Consider the highest dark cell in column ¢ which is inside S. Since
it is above a light cell and inside .S, it must be light as well. There are two cases:

Case 1. a; <n

If a; < n then this dark and light cell is (7, a;), as highlighted in the figure. However, this is the
(n + 4)-th cell in row a;, and we only shaded a,, < n + ¢ light cells in that row, a contradiction.

Case 2. a; =2n+1

If a; = n + 1, this dark and light cell is (i,n). This is the (n + ¢)-th cell in row n and we shaded
a, < a; + n light cells in this row, so we must have ¢ < a;. But a1 < a,, < n by (1) and (2), so
1 < ay implies a; < a,, < n, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the
number of shaded cells in S is at most n?.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have
a dark cell above S, and then the cell (n,n) would be dark and light. It follows that the number
of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded
cells in S equals a1 + - - - + a,. The desired result follows.

Solution 3. As in Solution 1, we first establish that a; < n+1i—1 for 1 <i < n. Now define
¢; = max(a;, 1) for 1 <i < n and extend the sequence ¢, o, . .. periodically modulo n. We claim
that this sequence also satisfies the conditions of the problem.

For1<i<j<nwehavea; <ajandi<j,soc <c;. Alsoa, <a; +nandn <1+nimply
¢n < ¢1 +n. Finally, the definitions imply that c., € {aq,, a;, a; —n,i} so ¢, < n+i—1 by (2) and
(3). This establishes (1) and (2) for ¢4, ca, . . ..
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Our new sequence has the additional property that

¢ =i fori=1,2,...,n, (6)
which allows us to construct the following visualization: Consider n equally spaced points on a
circle, sequentially labelled 1, 2, ..., n (mod n), so point k is also labelled n + k. We draw arrows
from vertex i to vertices i + 1,...,¢; for 1 < i < n, keeping in mind that ¢; > i by (6). Since

¢ <n+1—1by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself.
The total number of arrows is

n

C +1
number of arrows = Z(Cl — i) = Z o (n . >
i—1

i=1
Now we show that we never draw both arrows ¢ — j and 7 — i for 1 < i < j < n. Assume
contrariwise. This means, respectively, that

1< 7 <¢ and Jj<n-+i<g;.

We have n +i < ¢; < ¢; +n by (1), so i < ¢;. Since ¢; < n by (3), this implies that ¢; < ¢, <n
using (1) and (3). But then, using (1) again, j < ¢; < n implies ¢; < ¢, which combined with
n +1i < ¢; gives us that n + 4 < ¢.,. This contradicts (2).

This means that the number of arrows is at most (;‘), which implies that

o= (5 (") -
ZCZ'< + =n.
i=1 2 2

Recalling that a; < ¢; for 1 <7 < n, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case n = 1 and
the simple cases when a; = 1, a3 = n, or a, < n. Then, as in Solution 1, consider the index t such that
a1 < < ar <n<ap < < ay. Observe again that a; < t. Define the sequence dy,...,d,_1 by

d = a1 — 1 ifi <
Yl =2 ifiz

and extend it periodically modulo n — 1. One may verify that this sequence also satisfies the hypotheses
of the problem. The induction hypothesis then gives dy + - -+ + d,,_1 < (n — 1)?, which implies that

n t n
Dai=ar+ D (dia+ 1)+ Y, (dia+2) <t+({E—1)+2(n—t)+ (n—1)%=n’,
=1 1=2 =t+1

Comment 2. One unusual feature of this problem is that there are many different sequences for which
equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the
steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path
P from the lower left to the upper right corner of the n x n square S using only steps up and right, such
that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below
P dark, and the cells of S above P light. Now reflect the light shape across the line = y and shift it
up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal
sequence, and every optimal sequence arises in this way.
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Ab5. Let Z- be the set of all nonnegative integers. Find all the functions f: Z=o — Z=g
satisfying the relation

() = fln+1)+1 ()

for all n € Z~,.

(Serbia)
Answer. There are two such functions: f(n) =n+ 1 for all n € Z-o, and

n+1, n=0 (mod4) or n=2 (mod 4),
f(n)=<n+5 n=1(mod4), for all n € Z~,. (1)
n—3, n=3(mod4)

Throughout all the solutions, we write h*(z) to abbreviate the kth iteration of function h, so h is
the identity function, and h*(z) = h(...h(z)...)) for k > 1.
——

k times

Solution 1. To start, we get from () that

i) = f(fPn) = f(fln+1) +1) and fin+1)=f(f(n+1)=f(f(n+1)+1) +1,

thus
fin)+1=fi(n+1). (2)

I. Let us denote by R; the range of f%; note that Ry = Zs( since f° is the identity function.
Obviously, Ry 2 R; 2 .... Next, from (2) we get that if a € Ry then also a + 1 € Ry. This implies
that Z-o\Rs; — and hence Z-¢\R; — is finite. In particular, R; is unbounded.

Assume that f(m) = f(n) for some distinct m and n. Then from () we obtain f(m + 1) =
f(n + 1); by an easy induction we then get that f(m + ¢) = f(n + ¢) for every ¢ = 0. So the
function f(k) is periodic with period |m — n| for k¥ = m, and thus R; should be bounded, which is
false. So, f is injective.

II. Denote now S; = R; 1\R;; all these sets are finite for ¢ < 4. On the other hand, by the
injectivity we have n € S; <= f(n) € S;;1. By the injectivity again, f implements a bijection
between S; and S;,1, thus |S;]| = [S2| = ...; denote this common cardinality by k. If 0 € R3 then
0 = f(f(f(n))) for some n, thus from (x) we get f(n + 1) = —1 which is impossible. Therefore
0e RQ\Rg = Sl U 52 U 53, thus & > 1.

Next, let us describe the elements b of Ry\R3 = S1 U S5 U S3. We claim that each such element
satisfies at least one of three conditions (i) b = 0, (ii) b = f(0) + 1, and (zii) b—1 € S;. Otherwise
b—1 € Z=g, and there exists some n > 0 such that f(n) = b—1; but then f3(n—1) = f(n)+1=1b,
so be Rs.

This yields

3k = |51USQU53| <1—|—1—|—|Sl| =k’+2,

or k < 1. Therefore k = 1, and the inequality above comes to equality. So we have S; = {a},
Sy = {f(a)}, and S5 = {f?(a)} for some a € Z=(, and each one of the three options (i), (i),
and (i77) should be realized exactly once, which means that

{a, f(a), f*(a)} = {0,a+ 1, f(0) + 1}. (3)
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III. From (3), we get a+ 1€ {f(a), f*(a)} (the case a+ 1 = a is impossible). If a+1 = f?(a) then
we have f(a+1) = f3(a) = f(a + 1) + 1 which is absurd. Therefore

fla) =a+ 1. (4)

Next, again from (3) we have 0 € {a, f?(a)}. Let us consider these two cases separately.

Case 1. Assume that a = 0, then f(0) = f(a) = a+ 1= 1. Also from (3) we get f(1) = f?(a) =
f(0) +1 = 2. Now, let us show that f(n) = n 4+ 1 by induction on n; the base cases n < 1 are
established. Next, if n > 2 then the induction hypothesis implies

ntl=fln-1)+1=f(n-2)=f"n-1)=f(n),

establishing the step. In this case we have obtained the first of two answers; checking that is
satisfies (x) is straightforward.

Case 2. Assume now that f?(a) = 0; then by (3) we get a = f(0) + 1. By (4) we get f(a+1) =
f?(a) =0, then f(0) = f3(a) = fla+1)+1 =1, hence a = f(0) +1=2and f(2) =3 by (4). To
summarize,
f0)=1, f@2)=3, [f(3)=0.
Now let us prove by induction on m that (1) holds for all n = 4k, 4k + 2, 4k + 3 with k£ < m and

for all n = 4k + 1 with £ < m. The base case m = 0 is established above. For the step, assume
that m > 1. From () we get f3(4m —3) = f(4m —2) + 1 = 4m. Next, by (2) we have

fldm) = f4{4m —3) = fdm —4) +1= fF(4m —-3)+ 1 =4m + 1.
Then by the induction hypothesis together with () we successively obtain

fAm—3) = f3(4m —1) = f(4m) + 1 = dm + 2,
fAm+2) = f3(4m —4) = f(4m —3) + 1 = 4m + 3,
fdm+3) = f3(4m —3) = f(4m —2) + 1 = 4m,

thus finishing the induction step.

Finally, it is straightforward to check that the constructed function works:

fR4k) =4k +7 = f(4k + 1) + 1, Ak +1) =4k +4 = f(4k +2) + 1,
P4k +2) =4k + 1= f(4k +3) + 1, A4k +3) =4k +6 = f(4k +4) + 1.

Solution 2. I. For convenience, let us introduce the function g(n) = f(n) + 1. Substituting f(n)
instead of n into () we obtain

fin) = f(f(n) +1) +1, or fi(n) = g*(n). (5)
Applying f to both parts of () and using (5) we get
fAn)+1=f(fn+1)+1)+1=f'(n+1). (6)

Thus, if g>(0) = f*(0) = ¢ then an easy induction on n shows that

g*(n) = f4(n) =n +c, n € Zxo. (7)
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This relation implies that both f and ¢ are injective: if, say, f(m) = f(n ) then m + ¢ =
f4m) = f4n) = n + c. Next, since g(n) = 1 for every n, we have ¢ = ¢g*>(0) = 1. Thus from (7)
again we obtain f(n) # n and g(n) # n for all n € Z,.

I1. Next, application of f and g to (7) yields

fn+c)=f(n)=f{(f(n)) = f(n) +c and g(n+c)=g’(n)=g(n)+ec (8)

In particular, this means that if m = n (mod ¢) then f(m) = f(n) (mod ¢). Conversely, if
f(m) = f(n) (mod c¢) then we get m + ¢ = f*(m) = f4(n) = n + ¢ (mod ¢). Thus,

m=n (modc) <= f(m)=f(n) (modc) < g(m)=g(n) (modc). 9)

Now, let us introduce the function §(n) = f(n) —n = g(n) —n — 1. Set

c—1
S =Y 6(n)
n=0
Using (8), we get that for every complete residue system nyq, ..., n, modulo ¢ we also have

S:Zam)

By (9), we get that {f*(n): n =0,...,c— 1} and {g*(n): n
systems modulo ¢ for all k. Thus we have

0,...,c— 1} are complete residue

¢ =D (F'(n)—n) = Z Z (F51 ) = ) = )] Z =48

(¢}
(¢}

02=2 ) —n) =22 M n))=22(5(gk(n))+1)=25+20.
n=0 k=0n=0 k=0n=0

Therefore ¢ = 45 = 225 = 2(c? — 2¢), or ¢ = 4c. Since ¢ # 0, we get ¢ = 4. Thus, in view of
(8) it is sufficient to determine the values of f on the numbers 0, 1,2, 3.

II. Let d = ¢g(0) = 1. Then g(d) = ¢*(0) = 04+ ¢ = 4. Now, if d > 4, then we would
have g(d —4) = g(d) —4 = 0 which is impossible. Thus d € {1,2,3}. If d = 1 then we have
f(0) = g(0) — 1 = 0 which is impossible since f(n) # n for all n. If d = 3 then ¢(3) = ¢*(0) = 4
and hence f(3) = 3 which is also impossible. Thus g(0) = 2 and hence g(2) = ¢(0) = 4.

Next, if g(1) = 1 + 4k for some integer k, then 5 = ¢?(1) = g(1 + 4k) = g(1) + 4k = 1 + 8k
which is impossible. Thus, since {g(n): n = 0,1,2,3} is a complete residue system modulo 4, we
get g(1) = 3 + 4k and hence ¢(3) = ¢g*(1) — 4k = 5 — 4k, leading to k = 0 or k = 1. So, we obtain
iether

fO)=1,f(1) =2, f(2) =3, fB) =4, or [f(0)=1, f(1)=6, f(2) =3, f(3) =0,

thus arriving to the two functions listed in the answer.

Finally, one can check that these two function work as in Solution 1. One may simplify the
checking by noticing that (8) allows us to reduce it to n = 0,1, 2, 3.
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AG6. Let m # 0 be an integer. Find all polynomials P(z) with real coefficients such that
(2° —ma* + D)P(x + 1) + (2° + ma® + 1)P(z — 1) = 2(z* — mz + 1) P(x) (1)

for all real numbers z.

(Serbia)

Answer. P(z) = tx for any real number ¢.

Solution. Let P(z) = a,z™ + - - - + apz’ with a,, # 0. Comparing the coefficients of z"*! on both
sides gives a,(n —2m)(n—1) =0,s0n =1 or n = 2m.

If n = 1, one easily verifies that P(z) = z is a solution, while P(z) = 1 is not. Since the given
condition is linear in P, this means that the linear solutions are precisely P(x) = tx for t € R.

Now assume that n = 2m. The polynomial zP(x + 1) — (x + 1)P(x) = (n — 1)a,z™ + - -
has degree n, and therefore it has at least one (possibly complex) root r. If r ¢ {0,—1}, define
k=P(r)r=Pr+1)/(r+1). If r =0,let k = P(1). If r = =1, let k = —P(—1). We now
consider the polynomial S(x) = P(z) — kx. It also satisfies (1) because P(x) and kx satisfy it.
Additionally, it has the useful property that r and r + 1 are roots.

Let A(x) = 2® — ma? + 1 and B(z) = 2® + mz? + 1. Plugging in z = s into (1) implies that:

If s—1 and s are roots of S and s is not a root of A, then s+ 1 is a root of S.

If s and s + 1 are roots of S and s is not a root of B, then s — 1 is a root of S.

Let a>0and b>1 besuch that r —a,r—a+1,....,7,r+1,...,r+b—1, 7+ b are roots of S,
while r —a — 1 and r + b + 1 are not. The two statements above imply that » — a is a root of B
and r + b is a root of A.

Since r — a is a root of B(z) and of A(z + a + b), it is also a root of their greatest common
divisor C'(z) as integer polynomials. If C'(z) was a non-trivial divisor of B(z), then B would have
a rational root a. Since the first and last coefficients of B are 1, a can only be 1 or —1; but
B(—1) =m > 0and B(1) = m + 2 > 0 since n = 2m.

Therefore B(z) = A(x + a + b). Writing ¢ = a + b > 1 we compute

0= A(x+c) — B(x) = (3¢ — 2m)z* + c¢(3¢ — 2m)x + ¢*(c — m).

Then we must have 3¢ — 2m = ¢ — m = 0, which gives m = 0, a contradiction. We conclude that
f(z) = tz is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as
(2 —ma? + )P+ 1) +z(2®> + ma® + )Pz — 1) = [(x + 1) + (z — 1] (z° — mz + 1) P(x).
After regrouping, it becomes
(z° —ma? + 1)Q(x) = (z° + ma® + 1)Q(x — 1), (2)
where Q(z) = xP(x + 1) — (x + 1)P(x). If deg P > 2 then deg @ = deg P, so Q(x) has a finite

multiset of complex roots, which we denote Rg. Each root is taken with its multiplicity. Then the
multiset of complex roots of Q(z — 1) is Rg+ 1 ={z+1: 2 € Rg}.
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Let {xy, 9, 23} and {y1, y2, y3} be the multisets of roots of the polynomials A(z) = 23 —ma?+1
and B(z) = 2® + ma® + 1, respectively. From (2) we get the equality of multisets

{r1, 29,23} U Rg = {y1,92,y3} U (Rg + 1).

For every r € Rg, since r + 1 is in the set of the right hand side, we must have r + 1 € Rg or
r + 1 = x; for some ¢. Similarly, since r is in the set of the left hand side, either r — 1 € Rg or
r = y,; for some i. This implies that, possibly after relabelling y;, ys2, ys3, all the roots of (2) may
be partitioned into three chains of the form {y;, v; + 1,...,y; + k; = z;} for i = 1,2,3 and some
integers k1, ko, k3 = 0.

Now we analyze the roots of the polynomial A,(z) = z° + az?+ 1. Using calculus or elementary
methods, we find that the local extrema of A,(z) occur at x = 0 and x = —2a/3; their values are
A,(0) =1 > 0and A,(—2a/3) = 1+ 4a®/27, which is positive for integers a > —1 and negative for
integers a < —2. So when a € Z, A, has three real roots if a < —2 and one if a > —1.

Now, since y; — x; € Z for 1 = 1,2, 3, the cubics A,, and A_,, must have the same number of
real roots. The previous analysis then implies that m = 1 or m = —1. Therefore the real root « of
Ai(z) = 23+ 2% + 1 and the real root 3 of A_;(x) = 2® — 22 + 1 must differ by an integer. But this
is impossible, because 4;(—3) = —% and A;(—1) = 1 so —1.5 < a < —1, while A_;(-1) = —1
and A_;(—3) = 2,50 =1 < 3 < —0.5.

It follows that deg P < 1. Then, as shown in Solution 1, we conclude that the solutions are
P(z) = tz for all real numbers ¢.
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k& with the following property: Given
any real numbers ay, ...,aq such that a; +as +---+ag=nand 0 <a; <1fori=1,2,...,d, it
is possible to partition these numbers into k& groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

Answer. £k =2n—1.

Solution 1. Ifd=2n—1and a; = -+ = ag,_1 = n/(2n— 1), then each group in such a partition
can contain at most one number, since 2n/(2n — 1) > 1. Therefore k = 2n — 1. It remains to show
that a suitable partition into 2n — 1 groups always exists.

We proceed by induction on d. For d < 2n — 1 the result is trivial. If d > 2n, then since

(CL1 +CL2) + ...+ (CLgnfl +a2n) <n

we may find two numbers a;, a;,1 such that a; + a;;1 < 1. We “merge” these two numbers into
one new number a; + a;,1. By the induction hypothesis, a suitable partition exists for the d — 1
numbers aq,...,a;_1,a; + Qir1, i, ..., aq. This induces a suitable partition for aq, ..., aq.

Solution 2. We will show that it is even possible to split the sequence aq,...,aq into 2n — 1
contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a
segment S of length n, and partition it into segments S, ..., Sy of lengths ay, ..., ay, respectively,
as shown below. Consider a second partition of S into n equal parts by n — 1 “empty dots”.

aq Iagi
U T
1
1

1 1
ag 1 a4 As ag ary ag Qg  Aio
| Co
1 1

—————

—————

Assume that the n — 1 empty dots are in segments S;,,...,5;, ,. (If a dot is on the boundary
of two segments, we choose the right segment). These n — 1 segments are distinct because they
have length at most 1. Consider the partition:

{a17 s 7ai171}7 {ai1}7 {ai1+17 s 7ai271}7 {ai2}7 s {ain71}7 {ain71+1, R ad}-

In the example above, this partition is {a, as}, {as}, {as, a5}, {as}, T, {ar}, {as, a9, a10}. We claim
that in this partition, the sum of the numbers in this group is at most 1.

For the sets {a;,} this is obvious since a;, < 1. For the sets {a;, +1,...,a;,,,-1} this follows
from the fact that the corresponding segments lie between two neighboring empty dots, or between
an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than % in their own groups. Then, form the remaining
groups as follows: For each group, add new a;s one at a time until their sum exceeds % Since the
last summand is at most %, this group has sum at most 1. Continue this procedure until we have
used all the a;s. Notice that the last group may have sum less than % If the sum of the numbers
in the last two groups is less than or equal to 1, we merge them into one group. In the end we are
left with m groups. If m = 1 we are done. Otherwise the first m — 2 have sums greater than % and
the last two have total sum greater than 1. Therefore n > (m —2)/2+4 1 so m < 2n— 1 as desired.



22 IMO 2013 Colombia

Comment 1. The original proposal asked for the minimal value of k£ when n = 2.

Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose
sum is a real number r. In this case the smallest value of k is k = [2r] — 1, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound k < 2[r| — 1. This is actually the optimal bound
for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see
this, assume that r is not an integer and let ¢ = (r + 1 — [r])/(1 + [r]). One easily checks that 0 < ¢ < 3
and [r](2¢) + (Jr] = 1)(1 — ¢) = r, so the sequence

2¢c,1—c¢,2¢,1—c¢,..., 1 —¢, 2¢c

of 2[r| — 1 numbers satisfies the given conditions. For this sequence, the only suitable partition into
consecutive groups is the trivial partition, which requires 2[r| — 1 groups.
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C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k£ such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

Answer. k£ = 2013.

Solution 1. Firstly, let us present an example showing that k£ > 2013. Mark 2013 red and 2013
blue points on some circle alternately, and mark one more blue point somewhere in the plane. The
circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is
reached, then each arc should intersect some of the drawn lines. Since any line contains at most
two points of the circle, one needs at least 4026/2 = 2013 lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention
that for every two points A and B having the same color, one can draw two lines separating these
points from all other ones. Namely, it suffices to take two lines parallel to AB and lying on different
sides of AB sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.

Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the
other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the
other points by two lines. Thus, 2013 lines will be used.

Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices
of P, say A and B. One may separate these two points from the others by a line parallel to AB.
Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and
separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked
points A and B such that all the other marked points are on one side of this line. If one of A and B is
red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.

Solution 2. Let us present a different proof of the fact that £ = 2013 suffices. In fact, we will
prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily,
then it suffices to draw |n/2| lines to reach the goal.

We proceed by induction on n. If n < 2 then the statement is obvious. Now assume that n > 3,
and consider a line ¢ containing two marked points A and B such that all the other marked points
are on one side of ¢; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining
configuration it suffices to draw |n/2| — 1 lines to reach the goal. Now return the points A and B
back. Three cases are possible.

Case 1. If A and B have the same color, then one may draw a line parallel to ¢ and separating A
and B from the other points. Obviously, the obtained configuration of |n/2| lines works.

Case 2. If A and B have different colors, but they are separated by some drawn line, then again
the same line parallel to ¢ works.
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Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by
the drawn lines. By the induction assumption, this region contains no other points of one of the
colors — without loss of generality, the only blue point it contains is A. Then it suffices to draw
a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any
positive integers m and n, say with m < n. Denote the answer for this problem by f(m,n).

One may show along the lines of Solution 1 that m < f(m,n) < m + 1; moreover, if m is even then
f(m,n) = m. On the other hand, for every odd m there exists an N such that f(m,n) = m for all
m<n<N,and f(m,n) =m+1 for all n > N.
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C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

() If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

(74) At any moment, he may double the whole family of imons in his lab by creating a copy I’
of each imon I. During this procedure, the two copies I’ and J’' become entangled if and only if
the original imons [ and J are entangled, and each copy I’ becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected
if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its
vertices in several colors so that every two connected vertices have different colors.

Lemma. Assume that a graph G admits a proper coloring in n colors (n > 1). Then one may
perform a sequence of operations resulting in a graph which admits a proper coloring in n — 1
colors.

Proof. Let us apply repeatedly operation (i) to any appropriate vertices while it is possible. Since
the number of vertices decreases, this process finally results in a graph where all the degrees are
even. Surely this graph also admits a proper coloring in n colors 1,...,n; let us fix this coloring.

Now apply the operation (ii) to this graph. A proper coloring of the resulting graph in n
colors still exists: one may preserve the colors of the original vertices and color the vertex I’ in
a color k + 1 (mod n) if the vertex I has color k. Then two connected original vertices still have
different colors, and so do their two connected copies. On the other hand, the vertices I and I’
have different colors since n > 1.

All the degrees of the vertices in the resulting graph are odd, so one may apply operation (i)
to delete consecutively all the vertices of color n one by one; no two of them are connected by
an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a
proper coloring in n — 1 colors, as required. The lemma is proved. ]

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors.
Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color,
that is — a graph with no edges, as required.

Solution 2. Again, we will use the graph language.

[. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G° is obtained from G
by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with
no edges from G°, then such a sequence also exists for G.

Proof. Consider any operation applicable to G resulting in a graph G7; then there exists a sequence
of operations applicable to G and resulting in a graph G differing from G by an addition of an
isolated vertex A. Indeed, if this operation is of type (i), then one may simply repeat it in G.
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Otherwise, the operation is of type (i), and one may apply it to G and then delete the vertex A’
(it will have degree 1).
Thus one may change the process for GG° into a corresponding process for G step by step.  []

In view of this lemma, if at some moment a graph contains some isolated vertex, then we may
simply delete it; let us call this operation (7).

1. Let V = {AY,..., A%} be the vertices of the initial graph. Let us describe which graphs can
appear during our operations. Assume that operation (ii) was applied m times. If these were
the only operations applied, then the resulting graph G} has the set of vertices which can be

enumerated as '
Vit ={Al:1<i<n, 0<j<2™—1}

where A? is the common “ancestor” of all the vertices A7, and the binary expansion of j (adjoined
with some zeroes at the left to have m digits) “keeps the history” of this vertex: the dth digit from
the right is 0 if at the dth doubling the ancestor of AZ was in the original part, and this digit is 1
if it was in the copy.

Next, the two vertices Ag and A in G™ are connected with an edge exactly if either (1) j = ¢
and there was an edge between A? and A? (so these vertices appeared at the same application of
operation (ii)); or (2) ¢ = k and the binary expansions of j and /¢ differ in exactly one digit (so
their ancestors became connected as a copy and the original vertex at some application of (i7)).

Now, if some operations (i) were applied during the process, then simply some vertices in G
disappeared. So, in any case the resulting graph is some induced subgraph of G".

III. Finally, we will show that from each (not necessarily induced) subgraph of G one can obtain
a graph with no vertices by applying operations (i), (i7) and (7i7). We proceed by induction on n;
the base case n = 0 is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph
containing no vertices of the form A? for j € Z. We will do this in three steps.

Step 1. We apply repeatedly operation (i) to any appropriate vertices while it is possible. In the
resulting graph, all vertices have even degrees.

Step 2. Apply operation (ii) obtaining a subgraph of G™! with all degrees being odd. In this
graph, we delete one by one all the vertices A7 where the sum of the binary digits of j is even; it
is possible since there are no edges between such vertices, so all their degrees remain odd. After
that, we delete all isolated vertices.

Step 3. Finally, consider any remaining vertex A7 (then the sum of digits of j is odd). If its
degree is odd, then we simply delete it. Otherwise, since A7 is not isolated, we consider any vertex
adjacent to it. It has the form A7 for some k < n (otherwise it would have the form A%, where ¢
has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of Ai
was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete A} and A7.

Notice that this deletion does not affect the applicability of this step to other vertices, since
no two vertices Ag and A{ for different j, ¢ with odd digit sum are connected with an edge. Thus
we will delete all the remaining vertices of the form A7, obtaining a subgraph of G""*'. The
application of the induction hypothesis finishes the proof.

Comment. In fact, the graph G} is a Cartesian product of G and the graph of an m-dimensional
hypercube.
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C4. Let n be a positive integer, and let A be a subset of {1,...,n}. An A-partition of n into k

parts is a representation of n as a sum n = a; + - -+ + ag, where the parts aq,...,a; belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set {aj, as, ..., a}.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with < k. Prove that any optimal A-partition of n contains at most +/6n different parts.

(Germany)

Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let ki,
be the minimum number of parts in an A-partition of n, and let n = a; + --- + a;,,, be an
optimal partition. Denote by s the number of different parts in this partition, so we can write
S =A{ay,...,ap,..} =1{b1,...,bs} for some pairwise different numbers b; < --- < b, in A.

If s > {/6n, we will prove that there exist subsets X and Y of S such that |X| < |Y| and
Dwex T = Zer y. Then, deleting the elements of Y from our partition and adding the elements of
X to it, we obtain an A-partition of n into less than k,,;, parts, which is the desired contradiction.

For each positive integer k < s, we consider the k-element subset
Sf,O = {b17 s 7bk}
as well as the following k-element subsets Sk of S:
SEi=A{br, o by bhig g1 Dsmina, b}, i=1,k, j=1,...,s—k

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent
a subset of S by shading in the appropriate dots, we have:

Sk»:.......OOOO0.0000000.........
1,] \ ) NG AN _

-~ -~

k—i j s—k—j i—1

Denote by XF; the sum of elements in Sf;. Clearly, £} is the minimum sum of a k-element
subset of S. Next for all appropriate indices i and j we have

ko k k
Z = Z i,j+1 + bk i+j+1 T bk itj+2 < ZZ J+1 and Ezs k= Zerl 1+ bk (. bk i+l < ZHI 1
Therefore
k k k k k k k
L<Eg <87, <Bi, < <B,, <¥5, < <Df , <Zp < <Ef <

To see this in the picture, we start with the k& leftmost points marked. At each step, we look for
the rightmost point which can move to the right, and move it one unit to the right. We continue
until the £ rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found k(s — k) + 1 different integers of the form ¥ ; between 1 and n. As
we vary k, the total number of integers we are considering is

Z(k(s—k)+1)=S-S<S;1)—8(8+1)é28+1)+8=W>%>n.

k=1

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist
1<k<kKk <sand X = Sk as well as Y = S ;» such that

szZy, but |X|=k <k =|Y],

zeX yeY

as required. The result follows.
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Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum
number n for which it fails. So there exists a set A < {1,...,n} together with an optimal A-
partition n = a; + - - + ay,,, of n refuting our statement, where, of course, ky,;, is the minimum
number of parts in an A-partition of n. Again, we define S = {ay,...,ax, .} = {b1,...,bs} with
by < --- < by by our assumption we have s > /6n > 1. Without loss of generality we assume
that ay_. = bs. Let us distinguish two cases.

Case 1. by > @ + 1.
Consider the partition n — b, = a1 + -+ + a;
of n — b, with at least s — 1 > 1 different parts. Now, from n < % we obtain

which is clearly a minimum A-partition

min—1>

s(s—1) s s(s—1) (s —1)3

2 6 2 6
so s — 1 > {/6(n — bs), which contradicts the choice of n.
Case 2. b, < @

Set by = 0,300 =0,and >; ; = by+---+b;_1+b; for 1 <i < j < s. There are @%—1 > b, such
sums; so at least two of them, say ¥, ; and X j, are congruent modulo b, (where (4, j) # (¢',7)).
This means that ¥; ; — Xy j = rb, for some integer r. Notice that for i < j < k < s we have

n—bs<n-—

0< Ei,k —EiJ = bk —bj < bs,

so the indices ¢ and ¢ are distinct, and we may assume that i > ¢'. Next, we observe that
Ei,j — Eil’j/ = (bll - bj/) + bj + bi’+1 + -+ bifl and bi/ < bjl 1mply

—bs < —bjl < Ei,j — Eil’j/ < (Z — i/)bs,

so0<r<i—i—1.

Thus, we may remove the ¢ terms of 3J; ; in our A-partition, and replace them by the ¢’ terms
of ¥y j and r terms equal to by, for a total of r 4+ ¢’ < i terms. The result is an A-partition of n
into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in
the problem has the correct order of magnitude:

For every positive integer n, there exist a set A and an optimal A-partition of n that contains |v/2n)|
different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less
suitable for the competiton; but for completeness we provide an outline of its proof here.

Let k = |v/2n| — 1. The statement is trivial for n < 4, so we assume n > 4 and hence k > 1. Let
h =|2t]. Notice that h > % — 1.

Now let A= {1,...,h},andset a; = h,apo =h—1,...,ap =h—k+1,and ag,1 =n— (a1 +---+ag).
It is not difficult to prove that ap > ag1 = 1, which shows that

n=a+...+ a1

is an A-partition of n into k + 1 different parts. Since kh < n, any A-partition of n has at least k+ 1 parts.
Therefore our A-partition is optimal, and it has |v/2n] distinct parts, as desired.
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C5. Let r be a positive integer, and let ag, as,... be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n € [m + 1, m + ]
such that

A + Qa1 + -+ Qs = A + Apypy + 000+ Qs

Prove that the sequence is periodic, i.e. there exists some p > 1 such that a,,,, = a,, for all n > 0.

(India)
Solution. For every indices m < n we will denote S(m,n) = a, + a1 + -+ + a,_1; thus
S(n,n) = 0. Let us start with the following lemma.
Lemma. Let by, by, ... be an infinite sequence. Assume that for every nonnegative integer m there

exists a nonnegative integer n € [m + 1,m + r] such that b,, = b,. Then for every indices k < ¢

there exists an index t € [(,¢ + r — 1] such that b, = b;. Moreover, there are at most r distinct

numbers among the terms of (b;).

Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices

ky = k, ko, ks, ... such that by, = by, = --- = b, and k; < k;11 < k; +r for all © > 1. This sequence

is unbounded from above, thus it hits each segment of the form [/, £+ —1] with ¢ > k, as required.
To prove the second claim, assume, to the contrary, that there exist » + 1 distinct numbers

biy, ..., b,,. Let us apply the first claim to k = i1,...,%41 and £ = max{iy,...,4,11}; we obtain
that for every j € {1,...,7+ 1} there exists t; € [s, s +7 —1] such that b, = b;,;. Thus the segment
[s,s + 7 — 1] should contain r + 1 distinct integers, which is absurd. O

Setting s = 0 in the problem condition, we see that the sequence (a;) satisfies the condi-
tion of the lemma, thus it attains at most r distinct values. Denote by A; the ordered r-tuple
(@iy...,a;4,—1); then among A;’s there are at most r" distinct tuples, so for every k£ > 0 two of the
tuples Ay, Apy1, ..., Ar are identical. This means that there exists a positive integer p < " such
that the equality Ay = A4y, holds infinitely many times. Let D be the set of indices d satisfying
this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded,
it suffices to show that d € D whenever d + 1 € D. For that, denote by = S(k,p + k). The
sequence by, by, ... satisfies the lemma conditions, so there exists an index t € [d + 1,d + r] such
that S(t,t + p) = S(d,d + p). This last relation rewrites as S(d,t) = S(d + p,t + p). Since
Agir = Agipir, we have S(d+1,t) = S(d+ p+ 1,t + p), therefore we obtain

ag = S(d,t) = S(d+1,t) =S(d+p,t+p)—S(d+p+1,t+p) =as,

and thus Ay = A4y, as required.

Finally, we get Ay = Ag4y, for all d, so in particular ag = aqy, for all d, QED.

Comment 1. In the present proof, the upper bound for the minimal period length is »". This bound is
not sharp; for instance, one may improve it to (r — 1)" for r > 3..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to
check that the sequence with period (3, —3,3,—3,3,—1, —1, —1) satisfies the problem condition for r = 7.

Comment 2. The conclusion remains true even if the problem condition only holds for every s > N for
some positive integer N. To show that, one can act as follows. Firstly, the sums of the form S(i,i + N)
attain at most r values, as well as the sums of the form S(7,i+N+1). Thus the terms a; = S(i,i + N + 1)—
S(i+1,i + N + 1) attain at most 72 distinct values. Then, among the tuples Ag, Apy N, ..., Apip2ry two
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are identical, so for some p < r%" the set D = {d: Ag = Aq, Np} is infinite. The further arguments apply
almost literally, with p being replaced by Np.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for
the minimal period length to "™ — essentially by verifying that the sequence satisfies the original version
of the condition.
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)
Solution. Let us denote by d(a, b) the distance between the cities a and b, and by

Si(a) = {c: d(a,c) =i}

the set of cities at distance exactly 7 from city a.

Assume that for some city x the set D = S;(z) has size at least 2551. Let A = Si(z). A
subset A" of A is said to be substantial, if every city in D can be reached from x with four flights
while passing through some member of A’; in other terms, every city in D has distance 3 from
some member of A’, or D < J 4 S3(a). For instance, A itself is substantial. Now let us fix some
substantial subset A* of A having the minimal cardinality m = |A*|.

Since

m(101 —m) < 50 - 51 = 2550,

there has to be a city a € A* such that [S3(a) n D| = 102 — m. As |S3(a)| < 100, we obtain
that S3(a) may contain at most 100 — (102 — m) = m — 2 cities ¢ with d(c,z) < 3. Let us
denote by T' = {c € S3(a): d(x,c) < 3} the set of all such cities, so |T| < m — 2. Now, to get a
contradiction, we will construct m — 1 distinct elements in 7', corresponding to m — 1 elements of
the set A, = A*\{a}.

Firstly, due to the minimality of A*, for each y € A, there exists some city d, € D which can
only be reached with four flights from x by passing through y. So, there is a way to get from x to
d, along z—y-b,—c,d, for some cities b, and ¢,; notice that d(z,b,) = 2 and d(z, ¢,) = 3 since this
path has the minimal possible length.

Now we claim that all 2(m — 1) cities of the form b,, ¢, with y € A, are distinct. Indeed,
no b, may coincide with any c, since their distances from x are different. On the other hand, if
one had b, = b, for y # z, then there would exist a path of length 4 from z to d, via y, namely
x-y-b,—c,~d; this is impossible by the choice of d.. Similarly, ¢, # c, for y # z.

So, it suffices to prove that for every y € A,, one of the cities b, and ¢, has distance 3
from a (and thus belongs to 7). For that, notice that d(a,y) < 2 due to the path a—z—y, while
d(a,d,) = d(z,d,) — d(x,a) = 3. Moreover, d(a,d,) # 3 by the choice of d,; thus d(a,d,) > 3.
Finally, in the sequence d(a,y), d(a,b,), d(a, c,), d(a, d,) the neighboring terms differ by at most 1,
the first term is less than 3, and the last one is greater than 3; thus there exists one which is equal
to 3, as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of
them is the “Roman Empire”: it has one capital, called “Rome”, that is connected to 51 semicapitals by
internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities
by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size

of Sq(z) or Sa(z).
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Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced
2
by n and [@J for any positive integer n. Still more generally, one can also replace the pair (3,4) of

distances under consideration by any pair (r, s) of positive integers satisfying r < s < %7‘.

To adapt the above proof to this situation, one takes A = S;_,.(x) and defines the concept of substan-
tiality as before. Then one takes A* to be a minimal substantial subset of A, and for each y € A* one
fixes an element d, € Ss(x) which is only reachable from x by a path of length s by passing through y.

As before, it suffices to show that for distinct a,y € A* and a path y = yo —y1 — ... — ¥, = d,, at least
one of the cities yo,...,y,—1 has distance r from a. This can be done as above; the relation s < %7‘ is
used here to show that d(a,yp) < 7.

2
Moreover, the estimate [@J is also sharp for every positive integer n and every positive integers

r, s with r < s < %r. This may be shown by an example similar to that in the previous comment.
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CT7. Let n > 2 be an integer. Consider all circular arrangements of the numbers 0,1, ..., n; the
n + 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 < a,b,¢,d < n with a + ¢ = b + d, the chord joining
numbers a and ¢ does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0,1,...,n. Let N be the number of pairs
(x,y) of positive integers such that z + y < n and ged(x,y) = 1. Prove that

M=N+1.

(Russia)

Solution 1. Given a circular arrangement of [0,n] = {0,1,...,n}, we define a k-chord to be
a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three
chords of a circle are aligned if one of them separates the other two. Say that m > 3 chords
are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C' are aligned,
while B, C, and D are not.

Figure 1 Figure 2

Claim. In a beautiful arrangement, the k—chords are aligned for any integer k.

Proof. We proceed by induction. For n < 3 the statement is trivial. Now let n > 4, and proceed
by contradiction. Consider a beautiful arrangement S where the three k—chords A, B, C are not
aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain
a beautiful arrangement S\{n} of [0,n — 1], where A, B, and C are aligned by the induction
hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the
numbers by 1 gives a beautiful arrangement S\{0} where A, B, and C are aligned. Therefore
both 0 and n are among the endpoints of these segments. If x and y are their respective partners,
we have n > 0+ 2 =k =n+y = n. Thus 0 and n are the endpoints of one of the chords; say it
is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the
same side of C' as A and B, as shown in Figure 2. Set ¢t = u + v. If we had ¢ = n, the n—chords A,
B, and D would not be aligned in the beautiful arrangement S\{0,n}, contradicting the induction
hypothesis. If t < n, then the t-chord from 0 to ¢ cannot intersect D, so the chord C separates t
and D. The chord E from t to n —t does not intersect C, so t and n —t are on the same side of C.
But then the chords A, B, and E are not aligned in S\{0,n}, a contradiction. Finally, the case
t > n is equivalent to the case t < n via the beauty-preserving relabelling z — n—x for 0 < x < n,
which sends t-chords to (2n — t)—chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case n = 2 is
trivial. Now assume that n > 3. Let S be a beautiful arrangement of [0, n] and delete n to obtain
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the beautiful arrangement 7" of [0, — 1]. The n—chords of T" are aligned, and they contain every
point except 0. Say T is of Type 1 if 0 lies between two of these n—chords, and it is of Type 2
otherwise; i.e., if 0 is aligned with these n—chords. We will show that each Type 1 arrangement
of [0,n — 1] arises from a unique arrangement of [0, n], and each Type 2 arrangement of [0,n — 1]
arises from exactly two beautiful arrangements of [0, n].

If T is of Type 1, let 0 lie between chords A and B. Since the chord from 0 to n must be
aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be
recovered uniquely from 7T'. In the other direction, if 7" is of Type 1 and we insert n as above,
then we claim the resulting arrangement S is beautiful. For 0 < k < n, the k—chords of S are also
k—chords of T', so they are aligned. Finally, for n < k < 2n, notice that the n—chords of S are
parallel by construction, so there is an antisymmetry axis ¢ such that x is symmetric to n — z with
respect to £ for all x. If we had two k—chords which intersect, then their reflections across ¢ would
be two (2n — k)-chords which intersect, where 0 < 2n — k < n, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0. As above, we
check that both positions lead to beautiful arrangements of [0, n].

Hence if we let M,, be the number of beautiful arrangements of [0, n], and let L,, be the number
of beautiful arrangements of [0,n — 1] of Type 2, we have

Mn = (Mn—l - Ln—l) + 2Ln—l = Mn—l + Ln—l-

It then remains to show that L,_; is the number of pairs (x,y) of positive integers with z +y =n
and ged(z,y) = 1. Since n > 3, this number equals p(n) = #{z : 1 <x <n, ged(z,n) = 1}.

To prove this, consider a Type 2 beautiful arrangement of [0,n — 1]. Label the positions
0,...,n—1 (mod n) clockwise around the circle, so that number 0 is in position 0. Let f(i) be
the number in position i; note that f is a permutation of [0,n — 1]. Let a be the position such
that f(a) =n — 1.

Since the n—chords are aligned with 0, and every point is in an n—chord, these chords are all
parallel and

f@)+ f(—i) =n for all 7.

Similarly, since the (n — 1)—chords are aligned and every point is in an (n — 1)—chord, these chords
are also parallel and

f@)+ fla—i)=n—1 for all .

Therefore f(a — 1) = f(—i) — 1 for all 4; and since f(0) = 0, we get
f(=ak) =k for all k. (1)

Recall that this is an equality modulo n. Since f is a permutation, we must have (a,n) = 1. Hence
L, < p(n).

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider
four numbers w, x,y, z on the circle with w + y = & + z. Their positions around the circle satisfy
(—aw) + (—ay) = (—ax) + (—az), which means that the chord from w to y and the chord from
x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result
follows.
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Solution 2. Notice that there are exactly N irreducible fractions f; < -+ < fy in (0,1) whose
denominator is at most n, since the pair (x,y) with z + y < n and (z,y) = 1 corresponds to the
fraction x/(z +y). Write f; = ¢ for 1 <i < N.

We begin by constructing N + 1 beautiful arrangements. Take any « € (0, 1) which is not one
of the above N fractions. Consider a circle of perimeter 1. Successively mark points 0,1,2,....,n
where 0 is arbitrary, and the clockwise distance from i to ¢+ 1 is . The point k will be at clockwise
distance {ka} from 0, where {r} denotes the fractional part of r. Call such a circular arrangement
cyclic and denote it by A(«). If the clockwise order of the points is the same in A(«;) and A(az),
we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement A(3/5+¢)
of [0, 13] where € > 0 is very small.

Figure 3

If0<a,b, c, d<nsatisty a4+ ¢ = b+ d, then aa + ca = ba + da, so the chord from a to ¢ is
parallel to the chord from b to d in A(«). Hence in a cyclic arrangement all k—chords are parallel.
In particular every cyclic arrangement is beautiful.

Next we show that there are exactly N + 1 distinct cyclic arrangements. To see this, let us
see how A(«) changes as we increase « from 0 to 1. The order of points p and ¢ changes precisely
when we cross a value o = f such that {pf} = {q¢f}; this can only happen if f is one of the N
fractions fi,..., fn. Therefore there are at most N + 1 different cyclic arrangements.

To show they are all distinct, recall that f; = a;/b; and let € > 0 be a very small number. In

% + ke. Therefore the points are grouped

the arrangement A(f; + €), point k lands at -
of the circle. The cluster following bﬁ contains the

1 b;—1
1B by

numbers congruent to ka, ! modulo b;, listed clockwise in increasing order. It follows that the first
number after 0 in A(f; + €) is b;, and the first number after 0 which is less than b; is a; ' (mod b;),
which uniquely determines a;. In this way we can recover f; from the cyclic arrangement. Note
also that A(f; + €) is not the trivial arrangement where we list 0,1,...,n in order clockwise. It
follows that the N + 1 cyclic arrangements A(e), A(f1 +¢€),..., A(fx + €) are distinct.

into b; clusters next to the points 0

Let us record an observation which will be useful later:

if f; < a < fi11 then 0 is immediately after b;;; and before b; in A(«). (2)

Indeed, we already observed that b; is the first number after 0 in A(f; + €) = A(«). Similarly we
see that b;1q is the last number before 0 in A(fi11 —€) = A(a).
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Finally, we show that any beautiful arrangement of [0, 7] is cyclic by induction on n. For n < 2
the result is clear. Now assume that all beautiful arrangements of [0, n — 1] are cyclic, and consider
a beautiful arrangement A of [0,n]. The subarrangement A,_; = A\{n} of [0,n — 1] obtained by
deleting n is cyclic; say A, 1 = A,_1(«).

Let o be between the consecutive fractions g—i < *Z—z among the irreducible fractions of de-

3 p1 p2 ; 3 i+l
in (q—l,q—z), since = < — < “= for

nominator at most n — 1. There is at most one fraction %

O<i1<n-—1.

Case 1. There is no fraction with denominator n between % and Z—j.

In this case the only cyclic arrangement extending A, _1(a) is A, («). We know that A and
A, () can only differ in the position of n. Assume n is immediately after  and before y in A, («).
Since the neighbors of 0 are ¢; and ¢ by (2), we have z,y > 1.

Figure 4

In A, (a) the chord from n—1 to z is parallel and adjacent to the chord from n to x—1,son—1
is between x — 1 and z in clockwise order, as shown in Figure 4. Similarly, n — 1 is between y
and y — 1. Therefore x, y, © — 1, n — 1, and y — 1 occur in this order in A, () and hence in A
(possibly withy =z —1orz =y —1).

Now, A may only differ from A, («) in the location of n. In A, since the chord from n — 1
to x and the chord from n to z — 1 do not intersect, n is between x and n — 1. Similarly, n is
between n — 1 and y. Then n must be between z and y and A = A, («). Therefore A is cyclic as
desired.

Case 2. There is exactly one ¢ with % < % < z—j.

In this case there exist two cyclic arrangements A, () and A,(az) of the numbers 0,...,n
extending A,_1(«), where % < o < % and % < g < Z—;. In A, _1(a), 0 is the only number
between ¢o and ¢; by (2). For the same reason, n is between ¢o and 0 in A, (1), and between 0
and ¢; in A, (a2).

Letting x = ¢» and y = ¢, the argument of Case 1 tells us that n must be between z and y
in A. Therefore A must equal A, (aq) or A, (as), and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are
exactly V + 1 beautiful arrangements of [0, n] as we wished to show.
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C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1/2™ units of ink from the
pot. Player B then picks an integer k and blackens the interval from k/2™ to (k + 1)/2™ (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval [0, 1] is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)

Answer. No. Such a strategy for player A does not exist.

Solution. We will present a strategy for player B that guarantees that the interval [0, 1] is com-
pletely blackened, once the paint pot has become empty.

At the beginning of round r, let z, denote the largest real number for which the interval
between 0 and x, has already been blackened; for completeness we define z; = 0. Let m be the
integer picked by player A in this round; we define an integer v, by

Yr yr +1
— < X, .
2m

2m

Note that I = [y./2™, (y, + 1)/2™] is the leftmost interval that may be painted in round r and
that still contains some uncolored point.

Player B now looks at the next interval I7 = [(y. +1)/2™, (y, + 2)/2™]. If I] still contains an
uncolored point, then player B blackens the interval I]; otherwise he blackens the interval . We
make the convention that, at the beginning of the game, the interval [1,2] is already blackened;
thus, if y, + 1 = 2™, then B blackens [.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by
induction that, if before rth round the segment [0, 1] is not completely colored, then, before this
move,

(7) the amount of ink used for the segment [0, z,.] is at most 3x,; and
(7i) for every m, B has blackened at most one interval of length 1/2™ to the right of .

Obviously, these conditions are satisfied for » = 0. Now assume that they were satisfied before
the rth move, and consider the situation after this move; let m be the number A has picked at
this move.

If B has blackened the interval I] at this move, then x,.; = z,, and (i) holds by the induction
hypothesis. Next, had B blackened before the rth move any interval of length 1/2™ to the right
of z,, this interval would necessarily coincide with I{. By our strategy, this cannot happen. So,
condition (i7) also remains valid.

Assume now that B has blackened the interval Ijj at the rth move, but the interval [0, 1] still
contains uncolored parts (which means that ] is contained in [0, 1]). Then condition (éi) clearly
remains true, and we need to check (7) only. In our case, the intervals I] and I] are completely
colored after the rth move, so x,,1 either reaches the right endpoint of I; or moves even further
to the right. So, x,.1 = z, + « for some o > 1/2™.

Next, any interval blackened by B before the rth move which intersects (z,,x,;1) should be
contained in [x,,z,.1]; by (ii), all such intervals have different lengths not exceeding 1/2™, so
the total amount of ink used for them is less than 2/2™. Thus, the amount of ink used for the
segment [0, z,41] does not exceed the sum of 2/2™, 3z, (used for [0,x,]), and 1/2™ used for the
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segment ). In total it gives at most 3(x, + 1/2™) < 3(z, + o) = 3x,41. Thus condition (i) is also
verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the
(r—1)st move; assume that the segment [0, 1] is not completely black. By (i), in the segment [z, 1]
player B has colored several segments of different lengths; all these lengths are negative powers
of 2 not exceeding 1 — x,; thus the total amount of ink used for this interval is at most 2(1 — z;,.).
Using (i), we obtain that the total amount of ink used is at most 3z, + 2(1 — ) < 3. Thus the
pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.

Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the
whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of
the type [0,z]. Such a strategy cannot work (even if there is more ink available). Indeed, under the
assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers m < s in which,
if player B ever paints a point x = 1 — 1/2° then after some move, exactly the interval [0,1 — 1/2°] is
blackened, and the amount of ink used up to this moment is at least s/2.

For the base case s = 1, player A just picks m = 1 in the first round. If for some positive integer k
player A has such a strategy, for s + 1 he can first rescale his strategy to the interval [0,1/2] (sending in
each round half of the amount of ink he would give by the original strategy). Thus, after some round, the
interval [0,1/2 — 1/257!] becomes blackened, and the amount of ink used is at least s/4. Now player A
picks m = 1/2, and player B spends 1/2 unit of ink to blacken the interval [0,1/2]. After that, player A
again rescales his strategy to the interval [1/2,1], and player B spends at least s/4 units of ink to blacken
the interval [1/2,1 — 1/2°1], so he spends in total at least s/4 + 1/2 + s/4 = (s + 1)/2 units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:

Players A and B play a paintful game on the real numbers. Player A has a paint pot with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of
length p. In the beginning of the game, player A chooses (and announces) a positive integer
N. In every round, player A picks some positive integer m < N and provides 1/2™ units
of ink from the pot. The player B picks an integer k and blackens the interval from k/2™
to (k+1)/2™ (some parts of this interval may happen to be blackened before). The goal of
player A is to reach a situation where the pot is empty and the interval [0, 1] is not completely
blackened.

Decide whether there exists a strategy for player A to win.

However, the Problem Selection Committee believes that this version may turn out to be harder than the
original one.
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Geometry

G1l. Let ABC be an acute-angled triangle with orthocenter H, and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C|, respectively. Denote
by w; the circumcircle of BW N, and let X be the point on w; which is diametrically opposite
to W. Analogously, denote by wy the circumcircle of CW M, and let Y be the point on w, which
is diametrically opposite to W. Prove that X, Y and H are collinear.

(Thaliand)

Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of
circles wy; and wsq, other than W. We show that X, Y, Z and H lie on the same line.

Due to ZBNC = ZBMC = 90°, the points B, C';, N and M are concyclic; denote their circle
by ws. Observe that the line W Z is the radical axis of w; and wy; similarly, BN is the radical axis
of wy and ws, and C'M is the radical axis of ws and ws. Hence A = BN n C'M is the radical center
of the three circles, and therefore W Z passes through A.

Since WX and WY are diameters in w; and wo, respectively, we have /W ZX = /W ZY = 90°,
so the points X and Y lie on the line through Z, perpendicular to W Z.

A
w2
~
y -~
~
~
-
M P
-~
~
-~
~
~
-~
Wl //
-~
~
~ w3
N -7 Z
.\ i
H

’ p e —

The quadrilateral BLH N is cyclic, because it has two opposite right angles. From the power
of A with respect to the circles w; and BLHN we find AL-AH = AB- AN = AW - AZ. If H lies
on the line AW then this implies H = Z immediately. Otherwise, by j—g = ,f_v%/ the triangles AHZ
and AW L are similar. Then /ZHZA = /W LA = 90°, so the point H also lies on the line XY Z.

Comment. The original proposal also included a second statement:

Let P be the point on wy such that W P is parallel to CN, and let Q) be the point on ws such
that WQ is parallel to BM . Prove that P, QQ and H are collinear if and only if BW = CW
or AW 1 BC.

The Problem Selection Committee considered the first part more suitable for the competition.
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G2. Let w be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by 7" the midpoint of the arc BC' of w not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y, respectively; assume that X and Y lie inside the triangle ABC. The
lines M N and XY intersect at K. Prove that KA = KT

(Iran)

Solution 1. Let O be the center of w, thus O = MY n NX. Let ¢ be the perpendicular bisector
of AT (it also passes through O). Denote by r the operation of reflection about ¢. Since AT is the
angle bisector of ZBAC, the line r(AB) is parallel to AC. Since OM 1 AB and ON L AC, this
means that the line r(OM) is parallel to the line ON and passes through O, so r(OM) = ON.
Finally, the circumcircle 7 of the triangle AMT is symmetric about ¢, so r(y) = 7. Thus the
point M maps to the common point of ON with the arc AMT of v — that is, (M) = X.

Similarly, r(N) =Y. Thus, we get r(MN) = XY, and the common point K of MN nd XY
lies on ¢. This means exactly that KA = KT.

Solution 2. Let L be the second common point of the line AC with the circumcircle v of
the triangle AMT. From the cyclic quadrilaterals ABTC and AMTL we get /BTC = 180° —
/BAC = /ZMTL, which implies /BTM = /CTL. Since AT is an angle bisector in these
quadrilaterals, we have BT = TC and MT = TL. Thus the triangles BTM and CTL are
congruent, so CL = BM = AM.

Let X’ be the common point of the line NX with the external bisector of ZBAC' notice
that it lies outside the triangle ABC. Then we have /TAX' = 90° and X'A = X'C, so we
get LX'AM = 90° + LBAC/2 = 180° — LX'AC = 180° — LX'CA = /ZX'CL. Thus the
triangles X’AM and X'C'L are congruent, and therefore

/MX'L =/AX'C+ (LCX'L—ZAX'M) = /ZAX'C =180° — 2/ X'AC = /BAC = /MAL.

This means that X’ lies on ~.

Thus we have ZTXN = ZTXX' = /TAX' =90°, s0o TX || AC. Then LXTA = /TAC =
/TAM, so the cyclic quadrilateral M AT X is an isosceles trapezoid. Similarly, NATY is an
isosceles trapezoid, so again the lines MN and XY are the reflections of each other about the
perpendicular bisector of AT. Thus K belongs to this perpendicular bisector.
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Comment. There are several different ways of showing that the points X and M are symmetrical with
respect to £. For instance, one can show that the quadrilaterals AMON and T XOY are congruent. We
chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting
properties of the configuration.

Let us define Y, analogously to X', as the common point of MY and the external bisector of ZBAC.
One may easily see that in general the lines MN and X'Y’ (which is the external bisector of ZBAC)
do not intersect on the perpendicular bisector of AT. Thus, any solution should involve some argument
using the choice of the intersection points X and Y.
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G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ¢ be the non-obtuse angle of the rhombus. Prove that
v < max{£BAC, ZABC}.

(Serbia)
Solution 1. Let K, L, M, and N be the vertices of the rhombus lying on the sides AE, ED, DB,
and BA, respectively. Denote by d(X,Y Z) the distance from a point X to a line YZ. Since D

and E are the feet of the bisectors, we have d(D,AB) = d(D, AC), d(E,AB) = d(F, BC'), and
d(D,BC) = d(E, AC) = 0, which implies

d(D, AC) + d(D, BC) = d(D, AB) and d(E,AC) + d(E, BC) = d(E, AB).

Since L lies on the segment DE' and the relation d(X, AC) + d(X, BC) = d(X, AB) is linear in X
inside the triangle, these two relations imply

d(L, AC) + d(L, BC) = d(L, AB). (1)

Denote the angles as in the figure below, and denote a = K L. Then we have d(L, AC) = asin i
and d(L, BC) = asinv. Since KLMN is a parallelogram lying on one side of AB, we get
d(L,AB) =d(L,AB) + d(N,AB) = d(K, AB) + d(M, AB) = a(sin ¢ + sin¢).

Thus the condition (1) reads
sin g+ sinv = sind + sine. (2)

C

If one of the angles o and f is non-acute, then the desired inequality is trivial. So we assume
that a, 8 < 7/2. It suffices to show then that v = ZNKL < max{a«, 5}.

Assume, to the contrary, that ¢» > max{a,}. Since pu + ¢ = LCKN = a + 4, by our
assumption we obtain g = (o — ) + § < 0. Similarly, v < e. Next, since KN || ML, we have
B =0304+v,s0 < <m/2. Similarly, ¢ < 7/2. Finally, by p < d < 7/2 and v < ¢ < 7/2, we
obtain

sinpy <sind and sinv < sine.

This contradicts (2).

Comment. One can see that the equality is achieved if a = § for every rhombus inscribed into the
quadrilateral AEDB.
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G4. Let ABC be a triangle with ZB > ZC. Let P and @ be two different points on line AC
such that /PBA = ZQBA = ZACB and A is located between P and C. Suppose that there
exists an interior point D of segment B(@) for which PD = PB. Let the ray AD intersect the circle
ABC at R # A. Prove that QB = QR.

(Georgia)

Solution 1. Denote by w the circumcircle of the triangle ABC, and let ZACB = . Note
that the condition v < ZCBA implies v < 90°. Since ZPBA = 7, the line PB is tangent
to w, so PA-PC = PB? = PD? By % = % the triangles PAD and PDC' are similar, and
LADP = /DCP.

Next, since ZABQ = ZACB, the triangles ABC and AQB are also similar. Then ZAQB =
/ABC = ZARC, which means that the points D, R, C, and () are concyclic. Therefore ZDR(Q) =
/DCQ = LADP.

Figure 1

Now from ZARB = ZACB =~ and ZPDB = ZPBD = 2v we get
/QBR=/ADB - /ARB = /ADP + /PDB — /ARB = /DRQ +~v = ZQRB,
so the triangle QRB is isosceles, which yields QB = QR.

Solution 2. Again, denote by w the circumcircle of the triangle ABC'. Denote Z AC'B = ~. Since
/PBA = ~, the line PB is tangent to w.

Let E be the second intersection point of BQ with w. If V' is any point on the ray C'E
beyond E, then ZBEV' = 180° — ZBEC = 180° — ZBAC = /PAB; together with ZABQ =
/ PBA this shows firstly, that the rays BA and C'E intersect at some point V', and secondly
that the triangle V EB is similar to the triangle PAB. Thus we have /BVE = /ZBPA. Next,
LAREV = /BEV —~ = /PAB — ZABQ = ZAQB; so the triangles PBQ and VAFE are also

similar.

Let PH be an altitude in the isosceles triangle PBD; then BH = HD. Let GG be the intersection
point of PH and AB. By the symmetry with respect to PH, we have /BDG = /DBG = v =
/BEA; thus DG || AE and hence g—i = %. Thus the points G and D correspond to each other
in the similar triangles PAB and VEB, so Z/DVB = /GPB = 90° — ZPBQ = 90° — LV AE.

Thus VD L AFE.
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Let T be the common point of VD and AE, and let DS be an altitude in the triangle BDR.
The points S and T" are the feet of corresponding altitudes in the similar triangles ADE and BDR,

so 83 — AL On the other hand, the points T' and H are feet of corresponding altitudes in the
similar triangles VAFE and PBQ), so % = %. Thus % = % = g—g, and the triangles BHS

and BQR are similar.
Finally, SH is a median in the right-angled triangle SBD; so BH = HS, and hence BQ = QR.

R

B S

H
G w

D
P A Q C
T
E
Ve
Figure 2

Solution 3. Denote by w and O the circumcircle of the triangle ABC and its center, respectively.
From the condition /PBA = / BC' A we know that BP is tangent to w.

Let E be the second point of intersection of w and BD. Due to the isosceles triangle BDP,
the tangent of w at E is parallel to DP and consequently it intersects BP at some point L. Of
course, PD || LE. Let M be the midpoint of BE, and let H be the midpoint of BR. Notice that
/AEB = /ZACB = ZABQ = ZABFE, so A lies on the perpendicular bisector of BE; thus the
points L, A, M, and O are collinear. Let w; be the circle with diameter BO. Let Q' = HO n BE;
since HO 1is the perpendicular bisector of BR, the statement of the problem is equivalent to
Q=Q.

Consider the following sequence of projections (see Fig. 3).

1. Project the line BE to the line LB through the center A. (This maps @ to P.)
2. Project the line LB to BE in parallel direction with LE. (P — D.)

3. Project the line BE to the circle w through its point A. (D — R.)

4. Scale w by the ratio § from the point B to the circle wy. (R~ H.)

5. Project wy to the line BE through its point O. (H — @Q'.)

We prove that the composition of these transforms, which maps the line BFE to itself, is the
identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which
is fixed by all the transformations above. Another fixed point is M, its path being M — L —
E—FE—Mw—M.
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Figure 3 Figure 4
In order to show a third fixed point, draw a line parallel with LE through A; let that line
intersect BE, LB and w at X, Y and Z # A, respectively (see Fig. 4). We show that X is a
fixed point. The images of X at the first three transformations are X — Y — X — Z. From
/XBZ = /FAZ = /AFL = /LBA = /BZX we can see that the triangle X BZ is isosceles.
Let U be the midpoint of BZ; then the last two transformations do Z — U — X, and the point X
is fixed.

Comment. Verifying that the point F is fixed seems more natural at first, but it appears to be less
straightforward. Here we outline a possible proof.

Let the images of F at the first three transforms above be F, G and I. After comparing the angles
depicted in Fig. 5 (noticing that the quadrilateral AFBG is cyclic) we can observe that the tangent LE
of w is parallel to BI. Then, similarly to the above reasons, the point £ is also fixed.
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G5. Let ABCDEF be a convex hexagon with AB = DE, BC = EF, CD = FA, and
LA—/D=/C—-/F =/FE — /B. Prove that the diagonals AD, BE, and C'F are concurrent.

(Ukraine)

In all three solutions, we denote § = ZA—/D = /C —/F = /E — /B and assume without loss
of generality that § > 0.

Solution 1. Let v+ = AB = DE, y = CD = FA, z = EF = BC. Consider the points P, @,
and R such that the quadrilaterals CDEP, FFAQ, and ABCR are parallelograms. We compute

/PEQ = /FEQ+ /DEP — /E = (180° — ZF) + (180° — /D) — /E
=360°— /D~ /E—~/F=3/A+/B+/C—~/D~/E—/F)=0/2

Similarly, ZQAR = ZRCP = 0/2.

If 6 = 0, since ARCP is isosceles, R = P. Therefore AB || RC = PC || ED, so ABDE is a
parallelogram. Similarly, BCEF and C'DF A are parallelograms. It follows that AD, BE and C'F
meet at their common midpoint.

Now assume # > 0. Since APEQ, AQAR, and ARCP are isosceles and have the same angle
at the apex, we have APEQ ~ AQAR ~ ARCP with ratios of similarity y : z : . Thus

APQR is similar to the triangle with sidelengths y, z, and z. (1)
Next, notice that
RQ _z_RA
QP vy AF

and, using directed angles between rays,

£(RQ,QP) = £(RQ,QF) + £(QE,QP)
= £(RQ,QFE) + £(RA, RQ) = £(RA,QF) = £(RA, AF).

Thus APQR ~ AFAR. Since FA = y and AR = z, (1) then implies that F'R = x. Similarly
FP = x. Therefore CRF P is a rhombus.

We conclude that C'F' is the perpendicular bisector of PR. Similarly, BE is the perpendicular
bisector of P(Q) and AD is the perpendicular bisector of QR. It follows that AD, BE, and C'F are
concurrent at the circumcenter of PQR.
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Solution 2. Let X = CDNEF,Y = EFnAB, Z = ABnCD, X' = FAn BC,Y' =
BC nDE,and Z' = DEn FA. From LA+ /B + ZC = 360° + 0/2 we get LA+ /B > 180°
and /B + ZC > 180°, so Z and X' are respectively on the opposite sides of BC' and AB from the
hexagon. Similar conclusions hold for X, Y, Y’ and Z’. Then

LYZX =/B+/C—180°=ZLE + LF —180° = LY'Z' X",

and similarly ZZXY = /Z'X'Y" and /XY Z =/ X'Y'Z' so AXYZ ~ AX'Y'Z'. Thus there is
a rotation R_v)vhich ﬂlds AXY Z to a_tr)iangle_v)vith sides_pgrallel to AX'Y'Z'. Since AB = DE
we have R(AB) = DE. Similarly, R(C’D) = FA and R(EF) — BC. Therefore

0 =AB+BC+CD+ DE +EF + FA= (AB + CD + EF) + R(AB + CD + EF).

If R is a rotation by 180°, then any two opposite sides of our hexagon are equal and parallel,
so the three diagonals meet at their common midpoint. Otherwise, we must have

AB+CD+EF =10,

or else we would have two vectors with different directions whose sum is 0.
X/

Z/

This allows us to consider a triangle LM N with LM = ﬁ), MN = A_B), and NL = CD. Let O
be the circumcenter of ALMN and consider the points O, Oy, O3 such that AAOB, ACO,D,
and AEQOsF are translations of AMON, ANOL, and ALOM, respectively. Since FO3 and AO,
are translations of MO, quadrilateral AF O30, is a parallelogram and O30, = FA = CD = NL.
Similarly, 0109 = LM and O303 = M N. Therefore AO10,03 =~ ALMN. Moreover, by means
of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of AO;0,03. We claim that AD, BE, and CF meet at T. Let
us show that C', T', and I are collinear. Notice that COy = OT = T O3 = O3F since they are
all equal to the circumradius of ALMN. Therefore ATO3F and ACOsT are isosceles. Using
directed angles between rays again, we get

£(TF,TOy) = £(FO3, FT)  and  £(T0,TC) = £(CT,CO). (2)

Also, T and O are the circumcenters of the congruent triangles AO;0,03 and ALM N so we have
K (TO3,TOy) = £(ON,OM). Since CO, and FOj are translations of NO and MO respectively,
this implies

A(TO3,TOs) = £(COs, FO3). (3)
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Adding the three equations in (2) and (3) gives

which implies that T is on C'F'. Analogous arguments show that it is on AD and BE also. The
desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled
clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider
the complex numbers a, b, ¢, a’, V', ¢ given by B—A=a,D—-C =b,F —FE=c¢, E—D = d,
A—F=1V,and C — B=_c. Let k =|a|/|b]. From a/b' = —ke'“?* and da'/b = —ke*“P we get that
(a’/a)(t'/b) = e~ and similarly (¥ /b)(c'/c) = e=® and ('/c)(d’/a) = e~. Tt follows that a’ = ar,
b' = br, and ¢ = cr for a complex number r with |r| = 1, as shown below.

a+b+er=c(r—1)

—br c

—br—c
We have
O=a+cr+b+ar+c+br=(a+b+c)(l+7).
If » = —1, then the hexagon is centrally symmetric and its diagonals intersect at its center of

symmetry. Otherwise
a+b+c=0.

Therefore
AZOu B:a7 C:(I+CT, DZC(T—l), E:—bT—C’ F = —br.

Now consider a point W on AD given by the complex number ¢(r — 1), where A is a real number
with 0 < A < 1. Since D # A, we have r # 1, so we can define s = 1/(r — 1). From r7 = [r|? =1
we get

r
1+ s= = = = —35.
r—1 r—1rr 1-7

Now,
Wison BE < c¢(r—DA—a|la—(=br—c)=0b(r—1) < cA—as| b
— —al—b\—as||b < a(A+s)| b
One easily checks that r # +1 implies that A + s # 0 since s is not real. On the other hand,
WonCF < c(r—1)A+br||=br—(a+cr)=a(r—1) < cA+bl+5s)|a
— —aA—b\—=0b5||a <= b(A+53)||a <= b a(X+9),

where in the last step we use that (A + s)(A +3) = |X + s]* € Rog. We conclude that AD n BE =
CF n BE, and the desired result follows.
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G6. Let the excircle of the triangle ABC' lying opposite to A touch its side BC' at the point A;.
Define the points B; and C; analogously. Suppose that the circumcentre of the triangle A; BC
lies on the circumcircle of the triangle ABC'. Prove that the triangle ABC' is right-angled.

(Russia)

Solution 1. Denote the circumcircles of the triangles ABC and A;B;C} by 2 and I, respectively.
Denote the midpoint of the arc C'B of ) containing A by Ay, and define By as well as Cy analogously.
By our hypothesis the centre @) of I" lies on €.

Lemma. One has AgB; = AyC;. Moreover, the points A, Ay, By, and C; are concyclic. Finally,
the points A and Ay lie on the same side of B;(C. Similar statements hold for B and C.

Proof. Let us consider the case A = Aj first. Then the triangle ABC' is isosceles at A, which
implies AB; = AC; while the remaining assertions of the Lemma are obvious. So let us suppose
A # Ap from now on.

By the definition of Ay, we have AgB = AgC'. It is also well known and easy to show that BC =
CB;. Next, we have Z/C1BAy = LABAy = LACAy = £B;CAy. Hence the triangles AgBC,
and AyoC B are congruent. This implies AqgC, = AgBj, establishing the first part of the Lemma.
It also follows that ZAqC1A = ZAyB1 A, as these are exterior angles at the corresponding vertices
C7 and Bj of the congruent triangles AoBC; and AoCB;. For that reason the points A, Ay, By,
and C] are indeed the vertices of some cyclic quadrilateral two opposite sides of which are AA
and BlCl. U]

Now we turn to the solution. Evidently the points Ay, By, and C lie interior to some semicircle
arc of I', so the triangle A;B;C is obtuse-angled. Without loss of generality, we will assume that
its angle at B; is obtuse. Thus ) and By lie on different sides of A;Cy; obviously, the same holds
for the points B and B;. So, the points () and B are on the same side of A;C}.

Notice that the perpendicular bisector of A;Cy intersects 2 at two points lying on different
sides of A;C;. By the first statement from the Lemma, both points By and () are among these
points of intersection; since they share the same side of A;C, they coincide (see Figure 1).

Figure 1
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Now, by the first part of the Lemma again, the lines QQ Ay and QCj are the perpendicular
bisectors of B;C; and A; By, respectively. Thus

LClB(]Al = LClB(]Bl + LBlBoAl = QLAoBoBl + QLBlB(]CO = QLA()BOCO = 180° — LABC,

recalling that Ag and Cj are the midpoints of the arcs C'B and B A, respectively.
On the other hand, by the second part of the Lemma we have

LCyByA, = LC1BA, = LABC.

From the last two equalities, we get ZABC' = 90°, whereby the problem is solved.

Solution 2. Let () again denote the centre of the circumcircle of the triangle A, B;C4, that lies
on the circumcircle 2 of the triangle ABC. We first consider the case where ) coincides with one
of the vertices of ABC, say Q = B. Then BC; = BA; and consequently the triangle ABC' is
isosceles at B. Moreover we have BC; = B;C' in any triangle, and hence BB, = BC, = BC;
similarly, BB; = B1A. It follows that B is the centre of {2 and that the triangle ABC has a right
angle at B.

So from now on we may suppose @ ¢ {A, B,C}. We start with the following well known fact.

Lemma. Let XY Z and X'Y'Z' be two triangles with XY = X'Y' and YZ =Y'Z".
(1)) U XZ # X'Z' and LYZX = 2Y'Z' X', then LZXY + /Z'X'Y" = 180°.
(i) f LY ZX + £X'Z'Y" = 180°, then LZXY = /Y'X'Z".

Proof. For both parts, we may move the triangle XY Z through the plane until Y = Y’ and Z = Z'.
Possibly after reflecting one of the two triangles about Y Z, we may also suppose that X and X’
lie on the same side of Y Z if we are in case (i) and on different sides if we are in case (i7). In both
cases, the points X, Z, and X’ are collinear due to the angle condition (see Fig. 2). Moreover we
have X # X', because in case (i) we assumed XZ # X'Z’ and in case (ii) these points even lie
on different sides of YZ. Thus the triangle X XY is isosceles at Y. The claim now follows by

considering the equal angles at its base. ]
Y=Y’ Y=Y
é & /
X X’ Z =27 X Z =27 X
Figure 2(1) Figure 2(ii)

Relabeling the vertices of the triangle ABC' if necessary we may suppose that @) lies in the
interior of the arc AB of 2 not containing C. We will sometimes use tacitly that the six trian-
gles QBA;, QAC, QCBy, QB1 A, QC1 A, and QBC, have the same orientation.

As () cannot be the circumcentre of the triangle ABC, it is impossible that QA = QB = QC
and thus we may also suppose that QC # QB. Now the above Lemma (i) is applicable to the
triangles @ B,C and QC4 B, since @B, = QC, and B;C = (B, while ZB,CQ = £ZC,BQ holds
as both angles appear over the same side of the chord QA in Q) (see Fig. 3). So we get

/CQB, + /BQC, = 180°. (1)
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We claim that QC' = QA. To see this, let us assume for the sake of a contradiction that
QC # QA. Then arguing similarly as before but now with the triangles QA;C and QC1 A we get

/AQC + /C1QA = 180°.

Adding this equation to (1), we get LZA1QB; + ZBQA = 360°, which is absurd as both summands
lie in the interval (0°, 180°).

This proves QC' = QA; so the triangles QA;C and QC1 A are congruent their sides being equal,
which in turn yields

/AQC = LC1QA. (2)

Finally our Lemma (i7) is applicable to the triangles QA; B and Q) B; A. Indeed we have QA; = QB
and A1B = B A as usual, and the angle condition ZA;BQ + ZQAB; = 180° holds as A and B
lie on different sides of the chord QC in ). Consequently we have

/BQA, = /B,QA. (3)
From (1) and (3) we get
(LBlQC + LBlQA) + (LleB — LBQAl) = 1800,

ie. ZOQA+ £LAQC, = 180°. In light of (2) this may be rewritten as 2ZCQA = 180° and as @)
lies on €2 this implies that the triangle ABC' has a right angle at B.

Figure 3

Comment 1. One may also check that @ is in the interior of €2 if and only if the triangle ABC' is
acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle ABC
is right-angled, then the point @) lies on its circumcircle. The Problem Selection Committee thinks that
the above simplified version is more suitable for the competition.
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Number Theory

N1. Let Z., be the set of positive integers. Find all functions f: Z-.o — Z- such that
m? + f(n) | mf(m) +n

for all positive integers m and n.
(Malaysia)

Answer. f(n)=n.

Solution 1. Setting m = n = 2 tells us that 4+ f(2) | 2f(2) +2. Since 2f(2)+2 < 2(4+ f(2)), we
must have 2f(2)+2 =4+ f(2), so f(2) = 2. Plugging in m = 2 then tells us that 4+ f(n) |4 +n,
which implies that f(n) < n for all n.

Setting m = n gives n* + f(n) | nf(n) + n, so nf(n) + n = n* + f(n) which we rewrite as
(n —1)(f(n) —n) = 0. Therefore f(n) = n for all n > 2. This is trivially true for n = 1 also.

It follows that f(n) = n for all n. This function obviously satisfies the desired property.

Solution 2. Setting m = f(n) we get f(n)(f(n)+1) | f(n)f(f(n))+mn. This implies that f(n) | n
for all n.

Now let m be any positive integer, and let p > 2m? be a prime number. Note that p > mf(m)
also. Plugging in n = p—mf(m) we learn that m?*+ f(n) divides p. Since m*+ f(n) cannot equal 1,
it must equal p. Therefore p —m? = f(n) | n =p—mf(m). But p — mf(m) < p < 2(p —m?), so
we must have p — mf(m) = p —m?, ie., f(m)=m.

Solution 3. Plugging m = 1 we obtain 1+ f(n) < f(1) +n, so f(n) < n+ c for the constant ¢ =
f(1)—1. Assume that f(n) # n for some fixed n. When m is large enough (e.g. m > max(n,c+1))
we have

mf(m) +n <m(m+c) +n<2m? <2(m? + f(n)),

so we must have mf(m) +n = m? + f(n). This implies that

0# f(n) —n=m(f(m)—m),

which is impossible for m > |f(n) — n|. It follows that f is the identity function.
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N2. Prove that for any pair of positive integers k£ and n there exist k positive integers
mi,Ma, ..., my such that

k _
e 2 (e ) (1) (1),
n mq mo mi
(Japan)

Solution 1. We proceed by induction on k. For k = 1 the statement is trivial. Assuming we
have proved it for £ = j — 1, we now prove it for k = j.

Case 1. n = 2t — 1 for some positive integer t.
Observe that

i 21 1) 2 21 1 1
2ot 20 ) —<1+7)<1+ )

Ty 1T ot ot —1

By the induction hypothesis we can find my, ..., m;_; such that

2i—1 1 1 1 1
L () (1 D) (1)
t mq mo mjfl

so setting m; = 2t — 1 gives the desired expression.

Case 2. n = 2t for some positive integer t.

Now we have

1+2j—1_2t+2j—1 2042 -2 . 1 1+2]‘*1—1
2% A 4+21—2 2 N ’

noting that 2¢ + 2/ — 2 > 0. Again, we use that

21— 1 1 1 1
1+7:(1+_)(1+_)...(1+ )
t mq Mo mji—1

Setting m; = 2t + 27 — 2 then gives the desired expression.

Solution 2. Consider the base 2 expansions of the residues of n — 1 and —n modulo 2*:

n—1=2"42%4...42% (mod 2) where

< <ar<...<
—n =20 4272 4 ... 4 2% (mod 2¥) where 0 < <

a, < k—1,
b1<b2<... bsék—l
Since —1 =20+ 2! + ...+ 27! (mod 2%), we have {ay,...,a,} U{b;...,b;} ={0,1,...,k—1} and

r+s=k. Write

Sp:2ap+2ap+1_|_...+2a7" for 1<

p<r,
T,=2"+22 4 ... 42%  for 1<q<s.
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Also set S,,1 = Ty = 0. Notice that S; + 7T, =2 — 1 and n + T, =0 (mod 2¥). We have

2"—1 n+S+T, n+Si+T, n+T,

1+ = =
n n n—i—Ts n
n+Sp+1+Tq1n+Tq71
() 150
= +—' +77
p=1 n+5p+1+Ts g=1 7’L+Tq_1
so if we define
IS T, T,
mp:% forl<p<r and mr+q:% for 1 < q <s,
ap q

the desired equality holds. It remains to check that every m; is an integer. For 1 < p < r we have
n+ S +Ts=n+T,=0 (mod 2%)

and for 1 < ¢ < r we have
n+T, 1 =n+T,=0 (mod 2™).

The desired result follows.
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N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n* + n? + 1 is equal to the largest prime divisor of (n + 1)* + (n + 1)? + 1.

(Belgium)

Solution. Let p,, be the largest prime divisor of n* +n% + 1 and let ¢, be the largest prime divisor
of n? + n+ 1. Then p, = ¢,2, and from

e+ l=m+ 1) —nP=0-n+ 1)@’ +n+1)=((n—-1) +n -1 +1)n*+n+1)
it follows that p, = max{q,, ¢,_1} for n > 2. Keeping in mind that n?> —n + 1 is odd, we have
ged(n? +n+1,n* —n+1) =ged(2n,n* —n + 1) = ged(n,n* —n +1) = 1.

Therefore ¢, # ¢,—1.

To prove the result, it suffices to show that the set
S={n€Zz|gy> gu1 and ¢, > gny1}
is infinite, since for each n € S one has

Pn = maX{an anl} =d4n = maX{Qnu QnJrl} = Pn+1-

Suppose on the contrary that S is finite. Since ¢o =7 < 13 = ¢3 and ¢3 = 13 > 7 = qq, the set S
is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that ¢,, > ¢n+1 > ¢my2 > ... because all these numbers are positive
integers, so there exists a k = m such that g, < g1 (recall that g, # gry1). Next observe that it
is impossible to have gi < qr41 < qry2 < ..., because qi1y2 = Prt1 = MaX{Gr, Qe+1} = Qr+1, SO
let us take the smallest ¢ > k£ + 1 such that ¢, > ¢,;. By the minimality of ¢ we have ¢,_1 < q,
so e S. Since { =k + 1> k = m, this contradicts the maximality of m, and hence S is indeed
infinite.

Comment. Once the factorization of n* + n? + 1 is found and the set S is introduced, the problem is
mainly about ruling out the case that

T < Qb1 < Qg2 < - .. (1)

might hold for some k € Z~o. In the above solution, this is done by observing g1)2 = max(qg, Gr+1)-
Alternatively one may notice that (1) implies that ¢;j12 —¢; = 6 for j > k + 1, since every prime greater
than 3 is congruent to —1 or 1 modulo 6. Then there is some integer C' > 0 such that ¢, = 3n — C for
all n > k.

Now let the integer ¢ be sufficiently large (e.g. ¢t = max{k + 1,C + 3}) and set p = ¢;—1 > 2t. Then
p| =12+ (t—1)+1 implies that p | (p —t)> + (p — t) + 1, so p and q,—; are prime divisors of
(p—t)?+(p—-t)+1.Butp—t>t—1>ksoq>q-1=pandp-qp>p>>(p—1)2+(p—1)+1,
a contradiction.
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N4. Determine whether there exists an infinite sequence of nonzero digits a1, as, as, ... and a
positive integer N such that for every integer k£ > N, the number a,a,_1 ... a; is a perfect square.
(Iran)

Answer. No.

Solution. Assume that aq,as,as,... is such a sequence. For each positive integer k, let y, =
aparp_1...a;. By the assumption, for each £ > N there exists a positive integer z;, such that
Y = T3
I. For every n, let 57 be the greatest power of 5 dividing z,,. Let us show first that 2+, > n for
every positive integer n > N.

Assume, to the contrary, that there exists a positive integer n > N such that 2+, < n, which
yields

I __ 27n ~2v, Yy
Ynil = Gpi1ln .- a1 = 10"ap 1 + @pap_q ... a1 = 10"a, 11 + yp = 57 <2"5" MUyt + 52%) )

Since 5 | y,/5%™, we obtain v,;1 = v, < n < n + 1. By the same arguments we obtain that
Yn = Ynt1 = Vns2 = . ... Denote this common value by ~.
Now, for each k > n we have

(Thr1 — ) (Tha1 + Tk) = Tjyy — T = Yot — Yo = @1 - 105,

One of the numbers zj,,; — 2, and xj., + 2, is not divisible by 57*! since otherwise one would have
57+ | ((:EkH — 1) + (T4 +xk)) = 22;41. On the other hand, we have 5% | (2,1 — 21) (21 + 1),
so 577 divides one of these two factors. Thus we get

577 < max{api1 — Tk, Tpgr + Th) < 2Tppy = 2/ Y1 < 2- 100+1/2

which implies 52* < 4 - 5% - 10! or (5/2)% < 40 - 5%7. The last inequality is clearly false for
sufficiently large values of k. This contradiction shows that 2+, > n for all n > N.

II. Consider now any integer k > max{N/2,2}. Since 299,11 = 2k + 1 and 27940 = 2k + 2,
we have Yorp1 = k + 1 and o0 = k + 1. So, from yopyo = agpro - 10 + 4911 we obtain
52KF2 | yopio — Yoki1 = Aopyo - 10271 and thus 5 | aggy 2, which implies aggyo = 5. Therefore,

2 2 2k+1 2k+1  =2k+2
(I2k+2 - I2k+1)(3&’2k+2 + $2k+1) = Top42 — LTopy1 = Y2k+2 — Y2k+1 = 5-10 =2 -5 .

Setting Ay = Topy0/5" ! and By = wgp11/58!, which are integers, we obtain
(A, — By)(Ay + By) = 221, (1)

Both A, and By are odd, since otherwise 9or,2 or o1 would be a multiple of 10 which is false
by a; # 0; so one of the numbers Ay — By and Ay + By, is not divisible by 4. Therefore (1) yields
Ap — By, = 2 and Ay, + By, = 2%, hence A;, = 2?*~1 + 1 and thus

Topio = 5k+1Ak _ 10k+1 . 2k—2 + 5k+1 - 10k+1’

since k > 2. This implies that yo;42 > 10%**2 which contradicts the fact that ys;,2 contains 2k + 2
digits. The desired result follows.
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Solution 2. Again, we assume that a sequence aq,as,as,... satisfies the problem conditions,
introduce the numbers z; and y; as in the previous solution, and notice that

Yk+1 — Yk = (karl - SCk)(SCkH + xk) = 10kak+1 (2)

for all £ > N. Consider any such k. Since a; # 0, the numbers z, and x;, 1 are not multiples of 10,
and therefore the numbers py = .1 — 2 and ¢, = xp,1 + 2, cannot be simultaneously multiples
of 20, and hence one of them is not divisible either by 4 or by 5. In view of (2), this means that
the other one is divisible by either 5* or by 2¢~!. Notice also that p; and g, have the same parity,
so both are even.

On the other hand, we have 22, = 22 + 10%ag1 = 27 + 10F > 227, 80 @441/7% > V2, which
implies that

qk 2 2
l<—=—=14+————<14+—<6. 3
Dk Tpp1 /o — 1 V2 -1 )
Thus, if one of the numbers p; and g, is divisible by 5%, then we have

(5%)?
6

and hence (5/2)* < 60 which is false for sufficiently large k. So, assuming that k is large, we get
that 2¥~1 divides one of the numbers p; and ¢,. Hence

10" > 10% a1 = prar, =

{pr, @i} = {2"71 -5 by, 2- 5" k¢, }  with nonnegative integers by, ¢, 1 such that byc, = a1
Moreover, from (3) we get
oL 5mp, 1 [2\" 2.5 e, 4 (5\"
6> 2 ks = (Z) .52 and 6> P - (2) 57
2 5kricy ~ 36 (5) o k=1 . 5mby, ~ 9 <2>

SO
ak +cp <71 <ak+cy for a = %10g5(g) < 1 and some constants ¢y > cj. (4)

Consequently, for C' = cy —c; + 1 — a > 0 we have
(k?+1)—7’k+1<k‘—7’k+0. (5)

Next, we will use the following easy lemma.

Lemma. Let s be a positive integer. Then 572" = 5° (mod 10°).

Proof. Euler’s theorem gives 52" =1 (mod 2°), so 5°*% — 5° = 5%(5%° — 1) is divisible by 2% and 5°.
Now, for every large k£ we have

Tl = 5 ;— G — 5. 2"%by, + 5" ey, = 5" ¢, (mod 107) (6)

since 1, < k — 2 by (4); hence y; = 5** )¢ (mod 10™). Let us consider some large integer s,
and choose the minimal £ such that 2(k —ry) > s+ 2°; it exists by (4). Set d = 2(k —ry) — (s +2%).
By (4) we have 2° < 2(k — ;) < (2 — 2)r), — 22, if s is large this implies 75, > s, so (6) also holds
modulo 10°. Then (6) and the lemma give

Ypsr = 522 — 5542 5de2 = 55 542 (mod 10°). (7)
By (5) and the minimality of k we have d < 2C, so 5% < 5%¢ .81 = D. Using 5* < 10 we obtain

55 5%2 < 10*/4D < 107!

for sufficiently large s. This, together with (7), shows that the sth digit from the right in y,1,
which is ay, is zero. This contradicts the problem condition.
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Nb5. Fix an integer k > 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n > k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m’ with k& < m’ < m that is coprime to m. The first
player who cannot move anymore loses.

An integer n > k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n,n’ > k with the property that each prime number p < k divides n if
and only if it divides n’. Prove that either both n and n’ are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after
every move; so the game necessarily ends after at most n steps, and consequently there always has
to be some player possessing a winning strategy. So if some n > k is bad, then Ana has a winning
strategy in the game with starting number n.

More precisely, if n > k is such that there is a good integer m with n > m > k and
ged(m,n) = 1, then n itself is bad, for Ana has the following winning strategy in the game with
initial number n: She proceeds by first playing m and then using Banana’s strategy for the game
with starting number m.

Otherwise, if some integer n > k has the property that every integer m with n > m > k and
ged(m,n) = 1is bad, then n is good. Indeed, if Ana can make a first move at all in the game with
initial number n, then she leaves it in a position where the first player has a winning strategy, so
that Banana can defeat her.

In particular, this implies that any two good numbers have a non—trivial common divisor. Also,
k itself is good.

For brevity, we say that n — x is a mowve if n and x are two coprime integers with n > z > k.

Claim 1. If n is good and n' is a multiple of n, then n' is also good.

Proof. If n’ were bad, there would have to be some move n’ — x, where z is good. As n’ is a
multiple of n this implies that the two good numbers n and x are coprime, which is absurd.  []

Claim 2. If r and s denote two positive integers for which rs = k is bad, then r?s is also bad.

Proof. Since rs is bad, there is a move rs — x for some good x. Evidently z is coprime to 72s as
well, and hence the move r?s — x shows that r%s is indeed bad. O

Claim 3. If p > k is prime and n = k is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, np
is good. Since n is bad, there is a move n — z for some good x. Now np — x cannot be a
valid move, which tells us that x has to be divisible by p. So we can write x = p"y, where r and y
denote some positive integers, the latter of which is not divisible by p.

Note that y = 1 is impossible, for then we would have x = p” and the move x — k would
establish that x is bad. In view of this, there is a least power y“ of y that is at least as large
as k. Since the numbers np and y® are coprime and the former is good, the latter has to be
bad. Moreover, the minimality of o implies y* < ky < py = # < #. So p"~t-y® < n and
consequently all the numbers y*, py®,...,p" - y® = p(p" ! - y) are bad due to the minimal choice
of n. But now by Claim 1 the divisor x of p" - y* cannot be good, whereby we have reached a

contradiction that proves Claim 3. ]
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We now deduce the statement of the problem from these three claims. To this end, we call two
integers a,b = k similar if they are divisible by the same prime numbers not exceeding k. We are
to prove that if ¢ and b are similar, then either both of them are good or both are bad. As in this
case the product ab is similar to both a and b, it suffices to show the following: if ¢ > k is similar
to some of its multiples d, then either both ¢ and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample (cq, dy) with dy being
as small as possible. By Claim 1, ¢y is bad whilst dj is good. Plainly dj is strictly greater than ¢
and hence the quotient Zl—g has some prime factor p. Clearly p divides dy. If p < k, then p
divides ¢y as well due to the similarity, and hence dj is actually divisible by p?. So d?‘) is good by
the contrapositive of Claim 2. Since ¢ | %, the pair (co, %0) contradicts the supposed minimality
of dy. This proves p > k, but now we get the same contradiction using Claim 3 instead of Claim 2.
Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of
the first solution. Let us call a prime number p small in case p < k and big otherwise. We again
call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer b = k having some small prime factor, there exists an integer x
similar to it with b > x = k and having no big prime factors.

Proof. Unless b has a big prime factor we may simply choose x = b. Now let p and ¢ denote a
small and a big prime factor of b, respectively. Let a be the product of all small prime factors
of b. Further define n to be the least non—negative integer for which the number x = p"a is at
least as large as k. It suffices to show that b > x. This is clear in case n = 0, so let us assume
n > 0 from now on. Then we have x < pk due to the minimality of n, p < a because p divides a
by construction, and k < g. Therefore x < aq and, as the right hand side is a product of distinct
prime factors of b, this implies indeed = < b. OJ

Let us now assume that there is a pair (a,b) of similar numbers such that a is bad and b is
good. Take such a pair with max(a,b) being as small as possible. Since a is bad, there exists a
move a —> 7 for some good r. Since the numbers k and r are both good, they have a common
prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields
an integer 7’ similar to r containing small prime factors only and satisfying » > ' > k. Since
max(r,r’) = r < a < max(a,b) the number 7’ is also good. Now let p denote a common prime
factor of the good numbers " and b. By our construction of r’, this prime is small and due to
the similarities it consequently divides a and r, contrary to a — r being a move. Thereby the
problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For
instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.

Proof. Otherwise there exists a pair (b,b) of good numbers with & > b > k all of whose common prime
factors are big. Choose such a pair with b’ being as small as possible. Since b and k are both good, there
has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide ¥, which in
turn tells us o’ > b. Applying Claim 4 to b we get an integer x with b > z > k that is similar to b and has
no big prime divisors at all. By our assumption, ' and z are coprime, and as b’ is good this implies that
x is bad. Consequently there has to be some move x — b* such that b* is good. But now all the small
prime factors of b also appear in x and thus they cannot divide b*. Therefore the pair (b*,b) contradicts
the supposed minimality of . O
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From that point, it is easy to complete the solution: assume that there are two similar integers a and b
such that a is bad and b is good. Since a is bad, there is a move a — b’ for some good ¥’. By Claim 5,
there is a small prime p dividing b and ¢’. Due to the similarity of a and b, the prime p has to divide a
as well, but this contradicts the fact that a — ' is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence
bo, b1, ..., of all good numbers may be constructed recursively as follows:

e Start with by = k.

e If b, has just been defined for some n > 0, then b,, .1 is the smallest number b > b,, that is coprime
to none of by, ..., b,.

This construction can be used to determine the set of good numbers for any specific k as explained in the
next comment. It is already clear that if £ = p® is a prime power, then a number b > k is good if and
only if it is divisible by p.

Comment 3. Let P > 1 denote the product of all small prime numbers. Then any two integers a,b > k
that are congruent modulo P are similar. Thus the infinite word Wy, = (X, Xx41,...) defined by

o A if ¢ is bad
" |B if 7 is good

for all ¢ > k is periodic and the length of its period divides P. As the prime power example shows, the
true period can sometimes be much smaller than P. On the other hand, there are cases where the period
is rather large; e.g., if £ = 15, the sequence of good numbers begins with 15,18, 20, 24, 30, 36, 40, 42, 45
and the period of W5 is 30.

Comment 4. The original proposal contained two questions about the game of numbers, namely (a) to
show that if two numbers have the same prime factors then either both are good or both are bad, and (b)
to show that the word W} introduced in the previous comment is indeed periodic. The Problem Selection
Committee thinks that the above version of the problem is somewhat easier, even though it demands to
prove a stronger result.
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NG6. Determine all functions f: Q — Z satisfying

() 5

forall z € Q, a € Z, and b € Z~,. (Here, Z~( denotes the set of positive integers.)

(Israel)

Answer. There are three kinds of such functions, which are: all constant functions, the floor
function, and the ceiling function.

Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for
all constant functions. Now consider any triple (x,a,b) € Q x Z x Z~( and set

-5

This means that ¢ is an integer and bg < = + a < b(q + 1). It follows that bq < |z]| + a < b(q + 1)
holds as well, and thus we have
lz| +a| Vt + aJ
b | L v 17

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling
function has the same property.

II. Let us now suppose conversely that the function f: Q — Z satisfies (1) for all (z,a,b) €
Q X Z x Z~o. According to the behaviour of the restriction of f to the integers we distinguish two
cases.

Case 1: There is some m € Z such that f(m) # m.

Write f(m) = C and let n € {—1,+1} and b denote the sign and absolute value of f(m) — m,
respectively. Given any integer r, we may plug the triple (m,rb — C,b) into (1), thus getting
f(r) = f(r—mn). Starting with m and using induction in both directions, we deduce from this that
the equation f(r) = C holds for all integers . Now any rational number y can be written in the
form y = g with (p, q) € Z X Z~¢, and substituting (C'—p, p—C, q) into (1) we get f(y) = f(0) = C.
Thus f is the constant function whose value is always C'.

Case 2: One has f(m) = m for all integers m.
Note that now the special case b = 1 of (1) takes a particularly simple form, namely

flz)+a=f(z+a) for all (z,a) € Q x Z. (2)
Defining f (%) = w we proceed in three steps.

Step A. We show that w € {0, 1}.
If w < 0, we may plug (3, —w,1— 2w) into (1), obtaining 0 = f(0) = f(3) = w. In the contrary
case w > 1 we argue similarly using the triple (%, w—1,2w — 1).

Step B. We show that f(x) = w for all rational numbers x with 0 < x < 1.

Assume that this fails and pick some rational number ¢ € (0, 1) with minimal b such that f(%) # w.

Obviously, ged(a,b) = 1 and b > 2. If b is even, then a has to be odd and we can substitute
(3,42, 2) into (1), which yields

(D) (0) 2
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Recall that 0 < (a — 1)/2 < b/2. Thus, in both cases w = 0 and w = 1, the left-hand part of (3)
equals w either by the minimality of b, or by f(w) = w. A contradiction.
Thus b has to be odd, so b = 2k + 1 for some k > 1. Applying (1) to (%, k, b) we get

(=)o (8) -

Since a and b are coprime, there exist integers r € {1,2,...,b} and m such that ra — mb = k + w.
Note that we actually have 1 < r < b, since the right hand side is not a multiple of b. If m
is negative, then we have ra — mb > b > k + w, which is absurd. Similarly, m > r leads to
ra —mb < br — br = 0, which is likewise impossible; so we must have 0 < m < r — 1.

We finally substitute (2£2 m,r) into (1) and use (4) to learn

)1 (3)

But as above one may see that the left hand side has to equal w due to the minimality of b. This
contradiction concludes our step B.

Step C. Now notice that if w = 0, then f(z) = |z] holds for all rational x with 0 < z < 1 and
hence by (2) this even holds for all rational numbers z. Similarly, if w = 1, then f(z) = [x| holds
for all x € Q. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer,
proceeds as follows. Let square brackets indicate the floor function in case w = 0 and the ceiling function
if w = 1. We are to prove that f(z) = [x] holds for all x € Q, and because of Step A and (2) we already
know this in case 2z € Z. Applying (1) to (2z,0,2) we get

a1 (122)).

and by the previous observation this yields

fz) = [f (29”)} for all 2 € Q. (5)

An easy induction now shows

f(z) = [f(gzw)} for all (z,n) € Q x Z=o. (6)

Now suppose first that = is not an integer but can be written in the form g with p € Z and ¢ € Z~( both
being odd. Let d denote the multiplicative order of 2 modulo ¢ and let m be any large integer. Plugging
n = dm into (6) and using (2) we get

o - (2202 - [ g S

Since z is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the
above fomula gives f(x) = [x]. To complete the argument we just need to observe that if some y € Q

satisfies f(y) = [y], then (5) yields f (%) = f(%—]> = [[—g]] = [4].
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Solution 2. Here we just give another argument for the second case of the above solution. Again
we use equation (2). It follows that the set S of all zeros of f contains for each x € Q exactly one
term from the infinite sequence ...,z — 2, x — 1L, z, 2+ 1,2 +2,... .

Next we claim that

if (p,q) € Z x Z>o and 2 € S, then L5 € S holds as well. (7)

To see this we just plug (g,p,q + 1) into (1), thus getting f(quLl) = f(ﬂ) = 0.
From this we get that

ifz,y€Q, x>y >0, and x € S, then ye S. (8)

T

Indeed, if we write x = 5 and y = ~ with p,q,r, s € Z~g, then ps > ¢r and (7) tells us

1)) o) -1 (E) 1)

Essentially the same argument also establishes that

ifr,yeQ, r<y<0, andz€ S, thenye S. (9)

From (8) and (9) we get 0 € S < (—1,+1) and hence the real number a = sup(S) exists and

satisfies 0 < a < 1.

Let us assume that we actually had 0 < o < 1. Note that f(z) = 0 if z € (0,a) n Q by (8),
and f(x) =1ifz € (a,1) nQ by (9) and (2). Let K denote the unique positive integer satisfying
Ka <1 < (K + 1)a. The first of these two inequalities entails v < %, and thus there is a
rational number z € (o, +%). Setting y = (K + 1)z — 1 and substituting (y, 1, K + 1) into (1) we

P K41
learn
fly) +1\  (y+1Y\
f<K+1>_f<K+1)_f(z)'

Since a <z < 1 and 0 < y < «, this simplifies to

1
f<K+1):1

But, as 0 < KLH < «, this is only possible if o = KLH and f(«a) = 1. From this, however, we get

the contradiction
B 1 B a+0) fla)+0Y _
O_f((K+1)2>_f<K+1>_f<K+1)_ﬂa)_l’

Thus our assumption 0 < o < 1 has turned out to be wrong and it follows that o € {0,1}. If
a = 0, then we have S < (—1,0], whence S = (—1,0] n Q, which in turn yields f(z) = [«] for all
x € Q due to (2). Similarly, o = 1 entails S = [0,1) n Q and f(z) = |z] for all x € Q. Thereby
the solution is complete.
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Comment 2. It seems that all solutions to this problems involve some case distinction separating the
constant solutions from the unbounded ones, though the “descriptions” of the cases may be different
depending on the work that has been done at the beginning of the solution. For instance, these two cases
can also be “f is periodic on the integers” and “f is not periodic on the integers”. The case leading to
the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions x — |z| and x — [z] can easily be
treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem
interchanging these two functions. Namely, if a function f: Q — Z satisfies (1), then so does the
function g: Q — Z defined by g(x) = —f(—=x) for all x € Q. For that reason, we could have restricted
our attention to the case w = 0 in the first solution and, once « € {0,1} had been obtained, to the case
a = 0 in the second solution.
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NT7. Let v be an irrational positive number, and let m be a positive integer. A pair (a,b) of
positive integers is called good if
albv| — blav| = m. (*)

A good pair (a, b) is called ezcellent if neither of the pairs (a—0b,b) and (a,b—a) is good. (As usual,
by |z]| and [z] we denote the integer numbers such that z — 1 < || < z and z < [z] <z + 1.)
Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)

Solution. For positive integers a and b, let us denote
f(a,b) = albv| — blav|.

We will deal with various values of m; thus it is convenient to say that a pair (a,b) is m-good or
m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values f(a + b,b) and f(a,b + a) are related to f(a,b). If
{av} + {bv} < 1, then we have |(a + b)v| = |av| + |bv| and [(a + b)v| = [av] + [bv] — 1, so

fla+0,b) = (a+b)|ov] — b(lav] + |bv]) = f(a,b) + b([bv| — |bv]) = f(a,b) + b
and
fla,b+a) = a([ov] + |av] — 1) — (b+ a)|av| = f(a,b) + a([av] — 1 — |av]) = f(a,b]).
Similarly, if {av} + {bv} > 1 then one obtains
fla+0b,b) = f(a,b) and f(a,b+a)= f(a,b) + a.

So, in both cases one of the numbers f(a + b,a) and f(a,b+ a) is equal to f(a,b) while the other
is greater than f(a,b) by one of a and b. Thus, exactly one of the pairs (a + b,b) and (a,b + a) is
excellent (for an appropriate value of m).

Now let us say that the pairs (a + b,b) and (a,b + a) are the children of the pair (a,b), while
this pair is their parent. Next, if a pair (¢, d) can be obtained from (a, b) by several passings from a
parent to a child, we will say that (¢, d) is a descendant of (a, b), while (a, b) is an ancestor of (¢, d)
(a pair is neither an ancestor nor a descendant of itself). Thus each pair (a,b) has two children,
it has a unique parent if a # b, and no parents otherwise. Therefore, each pair of distinct positive
integers has a unique ancestor of the form (a,a); our aim is now to find how many m-excellent
descendants each such pair has.

Notice now that if a pair (a,b) is m-excellent then min{a,b} < m. Indeed, if a = b then
f(a,a) = a = m, so the statement is valid. Otherwise, the pair (a, b) is a child of some pair (a’, ). If
b =10 and a = a'+V, then we should have m = f(a,b) = f(a’,b')+V0,s0b=b =m—f(da',b) < m.
Similarly, if a = @’ and b =V + o’ then a < m.

Let us consider the set S, of all pairs (a,b) such that f(a,b) < m and min{a, b} < m. Then
all the ancestors of the elements in S, are again in S,,, and each element in 5, either is of the
form (a,a) with a < m, or has a unique ancestor of this form. From the arguments above we see
that all m-excellent pairs lie in S,,.

We claim now that the set S5, is finite. Indeed, assume, for instance, that it contains infinitely
many pairs (¢, d) with d > 2m. Such a pair is necessarily a child of (¢, d—c), and thus a descendant
of some pair (¢,d’) with m < d’ < 2m. Therefore, one of the pairs (a,b) € S,, with m < b < 2m
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has infinitely many descendants in S,,, and all these descendants have the form (a,b + ka) with k
a positive integer. Since f(a,b+ ka) does not decrease as k grows, it becomes constant for k > ko,
where kg is some positive integer. This means that {av} + {(b+ ka)r} <1 for all k = ky. But this
yields 1 > {(b + ka)v} = {(b + koa)v} + (k — ko){av} for all k > ko, which is absurd.

Similarly, one can prove that S,, contains finitely many pairs (¢, d) with ¢ > 2m, thus finitely
many elements at all.

We are now prepared for proving the following crucial lemma.

Lemma. Consider any pair (a,b) with f(a,b) # m. Then the number g(a,b) of its m-excellent
descendants is equal to the number h(a,b) of ways to represent the number ¢ = m — f(a,b) as
t = ka + ¢b with k and ¢ being some nonnegative integers.

Proof. We proceed by induction on the number N of descendants of (a,b) in S,,. If N =0 then
clearly g(a,b) = 0. Assume that h(a,b) > 0; without loss of generality, we have a < b. Then,
clearly, m — f(a,b) = a, so f(a,b+ a) < f(a,b) + a < m and a < m, hence (a,b+ a) € S,, which
is impossible. Thus in the base case we have g(a,b) = h(a,b) = 0, as desired.

Now let N > 0. Assume that f(a + b,0) = f(a,b) + b and f(a,b+ a) = f(a,b) (the other case
is similar). If f(a,b) + b # m, then by the induction hypothesis we have

g(a,b) = gla+0b,b) + g(a,b+ a) = h(a +b,b) + h(a,b+ a).

Notice that both pairs (a + b,b) and (a, b+ a) are descendants of (a,b) and thus each of them has
strictly less descendants in S,, than (a,b) does.

Next, each one of the h(a + b, b) representations of m — f(a +b,b) = m—b— f(a,b) as the sum
K'(a + b) + ¢'b provides the representation m — f(a,b) = ka + (b with k = k' < k' + 0 +1 = (.
Similarly, each one of the h(a,b + a) representations of m — f(a,b + a) = m — f(a,b) as the sum
K'a + ¢'(b+ a) provides the representation m — f(a,b) = ka + (b with k = k' + ¢’ = ¢’ = (. This
correspondence is obviously bijective, so

h(a,b) = h(a+ b,b) + h(a,b+ a) = g(a,b),

as required.

Finally, if f(a,b)+b = m then (a+b, b) is m-excellent, so g(a,b) = 1+g(a,b+a) = 1+h(a,b+a)
by the induction hypothesis. On the other hand, the number m — f(a,b) = b has a representation
0-a+ 1-b and sometimes one more representation as ka + 0 - b; this last representation exists
simultaneously with the representation m — f(a,b+a) = ka+0-(b+a), so h(a,b) = 1+ h(a,b+a)
as well. Thus in this case the step is also proved. ]

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form (a, a),
and each other m-excellent pair (a, b) has a unique ancestor of the form (z, z) with z < m. By the
lemma, for every z < m the number of its m-excellent descendants is h(z,x), which is the number
of ways to represent m — f(z,x) = m — x as kx + {x (with nonnegative integer k& and ¢). This
number is 0 if | m, and m/z otherwise. So the total number of excellent pairs is

1+ ) %:1+ dod=>d,
dlm

z|m, z<m dlm, d>1

as required.
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Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the
number of excellent pairs does not depend on the (irrational) number v, and to find this number for some
appropriate value of v. For that, we first introduce some geometrical language. We deal only with the
excellent pairs (a,b) with a # b.

Part I. Given an irrational positive v, for every positive integer n we introduce two integral points F,,(n) =
(n,|nv|) and Cy,(n) = (n,[nv]) on the coordinate plane Oxy. Then (%) reads as [OF,(a)C,(b)] = m/2;
here [-] stands for the signed area. Next, we rewrite in these terms the condition on a pair (a,b) to be
excellent. Let £, £, and ¢, be the lines determined by the equations y = vz, y = ve+1, and y = va —1,
respectively.

a). Firstly, we deal with all excellent pairs (a,b) with a < b. Given some value of a, all the points C such
that [OF,(a)C] = m/2 lie on some line f,(a); if there exist any good pairs (a,b) at all, this line has to
contain at least one integral point, which happens exactly when ged(a, |av]) | m.

Let P,(a) be the point of intersection of £} and f,(a), and let p,(a) be its abscissa; notice that p,(a)
is irrational if it is nonzero. Now, if (a,b) is good, then the point C,(b) lies on f,(a), which means that
the point of f,(a) with abscissa b lies between £, and ¢, and is integral. If in addition the pair (a,b — a)
is not good, then the point of f,(a) with abscissa b — a lies above £ (see Fig. 1). Thus, the pair (a,b)
with b > a is excellent exactly when p,(a) lies between b — a and b, and the point of f,(a) with abscissa b
is integral (which means that this point is C,(b)).

Notice now that, if p,(a) > a, then the number of excellent pairs of the form (a,b) (with b > a) is
ged(a, |av)).

£ e

Co(0): 7, Pyl
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Figure 1 Figure 2

b). Analogously, considering the pairs (a,b) with a > b, we fix the value of b, introduce the line ¢, (b)
containing all the points F' with [OFC,(b)] = m/2, assume that this line contains an integral point
(which means ged(b, [br]) | m), and denote the common point of ¢,(b) and ¢, by @Q,(b), its abscissa
being ¢, (b). Similarly to the previous case, we obtain that the pair (a,b) is excellent exactly when g, (a)
lies between a — b and a, and the point of ¢, (b) with abscissa a is integral (see Fig. 2). Again, if ¢, (b) > b,
then the number of excellent pairs of the form (a,b) (with a > b) is ged(b, [bv]).

Part 11, sketchy. Having obtained such a description, one may check how the number of excellent pairs
changes as v grows. (Having done that, one may find this number for one appropriate value of v; for
instance, it is relatively easy to make this calculation for v € (1, 1+ %))

Consider, for the initial value of v, some excellent pair (a,t) with a > ¢. As v grows, this pair
eventually stops being excellent; this happens when the point @, (t) passes through F,(a). At the same
moment, the pair (a + t,t) becomes excellent instead.

This process halts when the point Q,(t) eventually disappears, i.e. when v passes through the ratio
of the coordinates of the point 7' = C,,(t). Hence, the point T afterwards is regarded as F),(t). Thus, all
the old excellent pairs of the form (a,t) with a > t disappear; on the other hand, the same number of
excellent pairs with the first element being ¢ just appear.
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Similarly, if some pair (¢,b) with ¢ < b is initially v-excellent, then at some moment it stops being
excellent when P, (t) passes through C,,(b); at the same moment, the pair (¢,b—t) becomes excellent. This
process eventually stops when b —t < ¢t. At this moment, again the second element of the pair becomes
fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged,
as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly
by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially
much care should be applied to the limit points of this set, which are exactly the points when the line £,
passes through some point of the form C,,(b).

The same ideas may be explained in an algebraic language instead of a geometrical one; the same
technicalities remain in this way as well.
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