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Problems

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq and fpx` yq ě fpxq ` fpyq
for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n

and
aai ď n` i ´ 1 for i “ 1, 2, . . . , n,

prove that
a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1

for all n P Zě0.

(Serbia)

A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq
for all real numbers x.

(Serbia)
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m.

A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)
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Solutions

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

Solution 1. We prove by induction on k that

uk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait . p1q

Note that we have one trivial summand equal to 1 (which corresponds to t “ 0 and the empty
sequence, whose product is 1).

For k “ 0, 1 the sum on the right-hand side only contains the empty product, so (1) holds due
to u0 “ u1 “ 1. For k ě 1, assuming the result is true for 0, 1, . . . , k, we have

uk`1 “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait `
ÿ

0ăi1ă...ăităk´1,
ij`1´ijě2

ai1 . . . ait ¨ ak

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kRti1,...,itu

ai1 . . . ait `
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kPti1,...,itu

ai1 . . . ait

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2

ai1 . . . ait ,

as required.
Applying (1) to the sequence b1, . . . , bn given by bk “ an´k for 1 ď k ď n, we get

vk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

bi1 . . . bit “
ÿ

nąi1ą...ąitąn´k,
ij´ij`1ě2

ai1 . . . ait . p2q

For k “ n the expressions (1) and (2) coincide, so indeed un “ vn.

Solution 2. Define recursively a sequence of multivariate polynomials by

P0 “ P1 “ 1, Pk`1px1, . . . , xkq “ Pkpx1, . . . , xk´1q ` xkPk´1px1, . . . , xk´2q,

so Pn is a polynomial in n´ 1 variables for each n ě 1. Two easy inductive arguments show that

un “ Pnpa1, . . . , an´1q, vn “ Pnpan´1, . . . , a1q,
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so we need to prove Pnpx1, . . . , xn´1q “ Pnpxn´1, . . . , x1q for every positive integer n. The cases
n “ 1, 2 are trivial, and the cases n “ 3, 4 follow from P3px, yq “ 1 ` x ` y and P4px, y, zq “
1 ` x ` y ` z ` xz.

Now we proceed by induction, assuming that n ě 5 and the claim hold for all smaller cases.
Using F pa, bq as an abbreviation for P|a´b|`1pxa, . . . , xbq (where the indices a, . . . , b can be either
in increasing or decreasing order),

F pn, 1q “ F pn, 2q ` x1F pn, 3q “ F p2, nq ` x1F p3, nq
“ pF p2, n´ 1q ` xnF p2, n´ 2qq ` x1pF p3, n´ 1q ` xnF p3, n´ 2qq
“ pF pn´ 1, 2q ` x1F pn´ 1, 3qq ` xnpF pn´ 2, 2q ` x1F pn´ 2, 3qq
“ F pn´ 1, 1q ` xnF pn´ 2, 1q “ F p1, n´ 1q ` xnF p1, n´ 2q
“ F p1, nq,

as we wished to show.

Solution 3. Using matrix notation, we can rewrite the recurrence relation as
ˆ

uk`1

uk`1 ´ uk

˙

“
ˆ

uk ` akuk´1

akuk´1

˙

“
ˆ

1 ` ak ´ak
ak ´ak

˙ˆ

uk

uk ´ uk´1

˙

for 1 ď k ď n´ 1, and similarly

pvk`1; vk ´ vk`1q “
´

vk ` an´kvk´1;´an´kvk´1

¯

“ pvk; vk´1 ´ vkq
ˆ

1 ` an´k ´an´k

an´k ´an´k

˙

for 1 ď k ď n´ 1. Hence, introducing the 2 ˆ 2 matrices Ak “
ˆ

1 ` ak ´ak
ak ´ak

˙

we have

ˆ

uk`1

uk`1 ´ uk

˙

“ Ak

ˆ

uk

uk ´ uk´1

˙

and pvk`1; vk ´ vk`1q “ pvk; vk´1 ´ vkqAn´k.

for 1 ď k ď n´ 1. Since
`

u1

u1´u0

˘

“
`

1

0

˘

and pv1; v0 ´ v1q “ p1; 0q, we get
ˆ

un

un ´ un´1

˙

“ An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

and pvn; vn´1 ´ vnq “ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1.

It follows that

punq “ p1; 0q
ˆ

un

un ´ un´1

˙

“ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

“ pvn; vn´1 ´ vnq
ˆ

1

0

˙

“ pvnq.

Comment 1. These sequences are related to the Fibonacci sequence; when a1 “ ¨ ¨ ¨ “ an´1 “ 1, we
have uk “ vk “ Fk`1, the pk ` 1qst Fibonacci number. Also, for every positive integer k, the polynomial
Pkpx1, . . . , xk´1q from Solution 2 is the sum of Fk`1 monomials.

Comment 2. One may notice that the condition is equivalent to

uk`1

uk
“ 1 ` ak

1 ` ak´1

1 ` . . . ` a2

1 ` a1

and
vk`1

vk
“ 1 ` an´k

1 ` an´k`1

1 ` . . . ` an´2

1 ` an´1

so the problem claims that the corresponding continued fractions for un{un´1 and vn{vn´1 have the same
numerator.
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Comment 3. An alternative variant of the problem is the following.

Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the sequences
u0, . . . , un and v0, . . . , vn inductively by u0 “ v0 “ 0, u1 “ v1 “ 1, and

uk`1 “ akuk ` uk´1, vk`1 “ an´kvk ` vk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

All three solutions above can be reformulated to prove this statement; one may prove

un “ vn “
ÿ

0“i0ăi1ă...ăit“n,
ij`1´ij is odd

ai1 . . . ait´1
for n ą 0

or observe that
ˆ

uk`1

uk

˙

“
ˆ

ak 1
1 0

˙ˆ

uk

uk´1

˙

and pvk`1; vkq “ pvk; vk´1q
ˆ

ak 1
1 0

˙

.

Here we have
uk`1

uk
“ ak ` 1

ak´1 ` 1

ak´2 ` . . . ` 1

a1

“ rak; ak´1, . . . , a1s

and
vk`1

vk
“ an´k ` 1

an´k`1 ` 1

an´k`2 ` . . . ` 1

an´1

“ ran´k; an´k`1, . . . , an´1s,

so this alternative statement is equivalent to the known fact that the continued fractions ran´1; an´2, . . . , a1s
and ra1; a2, . . . , an´1s have the same numerator.
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A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

Solution. For any set S of n “ 2000 distinct real numbers, let D1 ď D2 ď ¨ ¨ ¨ ď Dm be the
distances between them, displayed with their multiplicities. Here m “ npn ´ 1q{2. By rescaling
the numbers, we may assume that the smallest distance D1 between two elements of S is D1 “ 1.
Let D1 “ 1 “ y ´ x for x, y P S. Evidently Dm “ v ´ u is the difference between the largest
element v and the smallest element u of S.

If Di`1{Di ă 1 ` 10´5 for some i “ 1, 2, . . . , m´ 1 then the required inequality holds, because
0 ď Di`1{Di ´ 1 ă 10´5. Otherwise, the reverse inequality

Di`1

Di

ě 1 ` 1

105

holds for each i “ 1, 2, . . . , m´ 1, and therefore

v ´ u “ Dm “ Dm

D1

“ Dm

Dm´1

¨ ¨ ¨ D3

D2

¨ D2

D1

ě
ˆ

1 ` 1

105

˙m´1

.

From m´ 1 “ npn´ 1q{2´ 1 “ 1000 ¨ 1999´ 1 ą 19 ¨ 105, together with the fact that for all n ě 1,
`

1 ` 1

n

˘n ě 1 `
`

n

1

˘

¨ 1

n
“ 2, we get

ˆ

1 ` 1

105

˙19¨105

“
˜

ˆ

1 ` 1

105

˙105
¸19

ě 219 “ 29 ¨ 210 ą 500 ¨ 1000 ą 2 ¨ 105,

and so v ´ u “ Dm ą 2 ¨ 105.
Since the distance of x to at least one of the numbers u, v is at least pu ´ vq{2 ą 105, we have

|x´ z| ą 105.

for some z P tu, vu. Since y ´ x “ 1, we have either z ą y ą x (if z “ v) or y ą x ą z (if z “ u).
If z ą y ą x, selecting a “ z, b “ y, c “ z and d “ x (so that b ‰ d), we obtain

ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

z ´ y

z ´ x
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

x´ y

z ´ x

ˇ

ˇ

ˇ

ˇ

“ 1

z ´ x
ă 10´5.

Otherwise, if y ą x ą z, we may choose a “ y, b “ z, c “ x and d “ z (so that a ‰ c), and obtain
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ z

x ´ z
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ x

x´ z

ˇ

ˇ

ˇ

ˇ

“ 1

x ´ z
ă 10´5.

The desired result follows.

Comment. As the solution shows, the numbers 2000 and 1

100000
appearing in the statement of the problem

may be replaced by any n P Zą0 and δ ą 0 satisfying

δp1 ` δqnpn´1q{2´1 ą 2.
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A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq, (1)

fpx` yq ě fpxq ` fpyq (2)

for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

Solution. Denote by Zą0 the set of positive integers.
Plugging x “ 1, y “ a into (1) we get fp1q ě 1. Next, by an easy induction on n we get

from (2) that
fpnxq ě nfpxq for all n P Zą0 and x P Qą0. (3)

In particular, we have
fpnq ě nfp1q ě n for all n P Zą0. (4)

From (1) again we have fpm{nqfpnq ě fpmq, so fpqq ą 0 for all q P Qą0.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

fpxq ě fptxuq ě txu ą x´ 1 for all x ě 1.

By an easy induction we get from (1) that fpxqn ě fpxnq, so

fpxqn ě fpxnq ą xn ´ 1 ùñ fpxq ě n
?
xn ´ 1 for all x ą 1 and n P Zą0.

This yields
fpxq ě x for every x ą 1. (5)

(Indeed, if x ą y ą 1 then xn ´ yn “ px´ yqpxn´1 ` xn´2y ` ¨ ¨ ¨ ` ynq ą npx´ yq, so for a large n
we have xn ´ 1 ą yn and thus fpxq ą y.)

Now, (1) and (5) give an “ fpaqn ě fpanq ě an, so fpanq “ an. Now, for x ą 1 let us choose
n P Zą0 such that an ´ x ą 1. Then by (2) and (5) we get

an “ fpanq ě fpxq ` fpan ´ xq ě x ` pan ´ xq “ an

and therefore fpxq “ x for x ą 1. Finally, for every x P Qą0 and every n P Zą0, from (1) and (3)
we get

nfpxq “ fpnqfpxq ě fpnxq ě nfpxq,
which gives fpnxq “ nfpxq. Therefore fpm{nq “ fpmq{n “ m{n for all m,n P Zą0.

Comment. The condition fpaq “ a ą 1 is essential. Indeed, for b ě 1 the function fpxq “ bx2 satisfies (1)
and (2) for all x, y P Qą0, and it has a unique fixed point 1{b ď 1.
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A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n (1)

and

aai ď n` i ´ 1 for i “ 1, 2, . . . , n, (2)

prove that

a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

Solution 1. First, we claim that

ai ď n` i ´ 1 for i “ 1, 2, . . . , n. (3)

Assume contrariwise that i is the smallest counterexample. From an ě an´1 ě ¨ ¨ ¨ ě ai ě n ` i

and aai ď n` i´ 1, taking into account the periodicity of our sequence, it follows that

ai cannot be congruent to i, i` 1, . . . , n´ 1, or n pmod nq. (4)

Thus our assumption that ai ě n ` i implies the stronger statement that ai ě 2n ` 1, which by
a1 ` n ě an ě ai gives a1 ě n ` 1. The minimality of i then yields i “ 1, and (4) becomes
contradictory. This establishes our first claim.

In particular we now know that a1 ď n. If an ď n, then a1 ď ¨ ¨ ¨ ď ¨ ¨ ¨ an ď n and the desired
inequality holds trivially. Otherwise, consider the number t with 1 ď t ď n´ 1 such that

a1 ď a2 ď . . . ď at ď n ă at`1 ď . . . ď an. (5)

Since 1 ď a1 ď n and aa1 ď n by (2), we have a1 ď t and hence an ď n ` t. Therefore if for each
positive integer i we let bi be the number of indices j P tt` 1, . . . , nu satisfying aj ě n` i, we have

b1 ě b2 ě . . . ě bt ě bt`1 “ 0.

Next we claim that ai ` bi ď n for 1 ď i ď t. Indeed, by n ` i ´ 1 ě aai and ai ď n, each j

with aj ě n` i (thus aj ą aai) belongs to tai ` 1, . . . , nu, and for this reason bi ď n ´ ai.

It follows from the definition of the bis and (5) that

at`1 ` . . .` an ď npn´ tq ` b1 ` . . .` bt.

Adding a1 ` . . .` at to both sides and using that ai ` bi ď n for 1 ď i ď t, we get

a1 ` a2 ` ¨ ¨ ¨ ` an ď npn´ tq ` nt “ n2

as we wished to prove.
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Solution 2. In the first quadrant of an infinite grid, consider the increasing “staircase” obtained
by shading in dark the bottom ai cells of the ith column for 1 ď i ď n. We will prove that there
are at most n2 dark cells.

To do it, consider the n ˆ n square S in the first quadrant with a vertex at the origin. Also
consider the nˆn square directly to the left of S. Starting from its lower left corner, shade in light
the leftmost aj cells of the jth row for 1 ď j ď n. Equivalently, the light shading is obtained by
reflecting the dark shading across the line x “ y and translating it n units to the left. The figure
below illustrates this construction for the sequence 6, 6, 6, 7, 7, 7, 8, 12, 12, 14.

i

ai

n+ i− 1

aai

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that
there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since
it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. ai ď n

If ai ď n then this dark and light cell is pi, aiq, as highlighted in the figure. However, this is the
pn ` iq-th cell in row ai, and we only shaded aai ă n` i light cells in that row, a contradiction.

Case 2. ai ě n` 1

If ai ě n ` 1, this dark and light cell is pi, nq. This is the pn ` iq-th cell in row n and we shaded
an ď a1 ` n light cells in this row, so we must have i ď a1. But a1 ď aa1 ď n by (1) and (2), so
i ď a1 implies ai ď aa1 ď n, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the
number of shaded cells in S is at most n2.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have
a dark cell above S, and then the cell pn, nq would be dark and light. It follows that the number
of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded
cells in S equals a1 ` ¨ ¨ ¨ ` an. The desired result follows.

Solution 3. As in Solution 1, we first establish that ai ď n ` i ´ 1 for 1 ď i ď n. Now define
ci “ maxpai, iq for 1 ď i ď n and extend the sequence c1, c2, . . . periodically modulo n. We claim
that this sequence also satisfies the conditions of the problem.

For 1 ď i ă j ď n we have ai ď aj and i ă j, so ci ď cj . Also an ď a1 ` n and n ă 1` n imply
cn ď c1 ` n. Finally, the definitions imply that cci P taai , ai, ai ´ n, iu so cci ď n` i´ 1 by (2) and
(3). This establishes (1) and (2) for c1, c2, . . ..
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Our new sequence has the additional property that

ci ě i for i “ 1, 2, . . . , n, (6)

which allows us to construct the following visualization: Consider n equally spaced points on a
circle, sequentially labelled 1, 2, . . . , n pmod nq, so point k is also labelled n` k. We draw arrows
from vertex i to vertices i ` 1, . . . , ci for 1 ď i ď n, keeping in mind that ci ě i by (6). Since
ci ď n ` i ´ 1 by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself.
The total number of arrows is

number of arrows “
n
ÿ

i“1

pci ´ iq “
n
ÿ

i“1

ci ´
ˆ

n ` 1

2

˙

Now we show that we never draw both arrows i Ñ j and j Ñ i for 1 ď i ă j ď n. Assume
contrariwise. This means, respectively, that

i ă j ď ci and j ă n ` i ď cj .

We have n ` i ď cj ď c1 ` n by (1), so i ď c1. Since c1 ď n by (3), this implies that ci ď cc1 ď n

using (1) and (3). But then, using (1) again, j ď ci ď n implies cj ď cci, which combined with
n ` i ď cj gives us that n` i ď cci. This contradicts (2).

This means that the number of arrows is at most
`

n

2

˘

, which implies that

n
ÿ

i“1

ci ď
ˆ

n

2

˙

`
ˆ

n` 1

2

˙

“ n2.

Recalling that ai ď ci for 1 ď i ď n, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case n “ 1 and
the simple cases when a1 “ 1, a1 “ n, or an ď n. Then, as in Solution 1, consider the index t such that
a1 ď ¨ ¨ ¨ ď at ď n ă at`1 ď ¨ ¨ ¨ ď an. Observe again that a1 ď t. Define the sequence d1, . . . , dn´1 by

di “
#

ai`1 ´ 1 if i ď t´ 1

ai`1 ´ 2 if i ě t

and extend it periodically modulo n´ 1. One may verify that this sequence also satisfies the hypotheses
of the problem. The induction hypothesis then gives d1 ` ¨ ¨ ¨ ` dn´1 ď pn´ 1q2, which implies that

n
ÿ

i“1

ai “ a1 `
t
ÿ

i“2

pdi´1 ` 1q `
n
ÿ

i“t`1

pdi´1 ` 2q ď t` pt´ 1q ` 2pn´ tq ` pn´ 1q2 “ n2.

Comment 2. One unusual feature of this problem is that there are many different sequences for which
equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the
steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path
P from the lower left to the upper right corner of the nˆ n square S using only steps up and right, such
that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below
P dark, and the cells of S above P light. Now reflect the light shape across the line x “ y and shift it
up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal
sequence, and every optimal sequence arises in this way.
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A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1 p˚q

for all n P Zě0.

(Serbia)

Answer. There are two such functions: fpnq “ n` 1 for all n P Zě0, and

fpnq “

$

’

&

’

%

n ` 1, n ” 0 pmod 4q or n ” 2 pmod 4q,
n ` 5, n ” 1 pmod 4q,
n ´ 3, n ” 3 pmod 4q

for all n P Zě0. (1)

Throughout all the solutions, we write hkpxq to abbreviate the kth iteration of function h, so h0 is
the identity function, and hkpxq “ hp. . . h

loomoon

k times

pxq . . . qq for k ě 1.

Solution 1. To start, we get from p˚q that

f 4pnq “ fpf 3pnqq “ f
`

fpn` 1q ` 1
˘

and f 4pn ` 1q “ f 3pfpn` 1qq “ f
`

fpn` 1q ` 1
˘

` 1,

thus
f 4pnq ` 1 “ f 4pn ` 1q. (2)

I. Let us denote by Ri the range of f i; note that R0 “ Zě0 since f 0 is the identity function.
Obviously, R0 Ě R1 Ě . . . . Next, from (2) we get that if a P R4 then also a` 1 P R4. This implies
that Zě0zR4 — and hence Zě0zR1 — is finite. In particular, R1 is unbounded.

Assume that fpmq “ fpnq for some distinct m and n. Then from p˚q we obtain fpm ` 1q “
fpn ` 1q; by an easy induction we then get that fpm ` cq “ fpn ` cq for every c ě 0. So the
function fpkq is periodic with period |m´ n| for k ě m, and thus R1 should be bounded, which is
false. So, f is injective.

II. Denote now Si “ Ri´1zRi; all these sets are finite for i ď 4. On the other hand, by the
injectivity we have n P Si ðñ fpnq P Si`1. By the injectivity again, f implements a bijection
between Si and Si`1, thus |S1| “ |S2| “ . . . ; denote this common cardinality by k. If 0 P R3 then
0 “ fpfpfpnqqq for some n, thus from p˚q we get fpn ` 1q “ ´1 which is impossible. Therefore
0 P R0zR3 “ S1 Y S2 Y S3, thus k ě 1.

Next, let us describe the elements b of R0zR3 “ S1 YS2 YS3. We claim that each such element
satisfies at least one of three conditions piq b “ 0, piiq b “ fp0q ` 1, and piiiq b´ 1 P S1. Otherwise
b´1 P Zě0, and there exists some n ą 0 such that fpnq “ b´1; but then f 3pn´1q “ fpnq `1 “ b,
so b P R3.

This yields
3k “ |S1 Y S2 Y S3| ď 1 ` 1 ` |S1| “ k ` 2,

or k ď 1. Therefore k “ 1, and the inequality above comes to equality. So we have S1 “ tau,
S2 “ tfpaqu, and S3 “ tf 2paqu for some a P Zě0, and each one of the three options piq, piiq,
and piiiq should be realized exactly once, which means that

ta, fpaq, f 2paqu “ t0, a` 1, fp0q ` 1u. (3)
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III. From (3), we get a` 1 P tfpaq, f 2paqu (the case a` 1 “ a is impossible). If a` 1 “ f 2paq then
we have fpa` 1q “ f 3paq “ fpa` 1q ` 1 which is absurd. Therefore

fpaq “ a` 1. (4)

Next, again from (3) we have 0 P ta, f 2paqu. Let us consider these two cases separately.

Case 1. Assume that a “ 0, then fp0q “ fpaq “ a ` 1 “ 1. Also from (3) we get fp1q “ f 2paq “
fp0q ` 1 “ 2. Now, let us show that fpnq “ n ` 1 by induction on n; the base cases n ď 1 are
established. Next, if n ě 2 then the induction hypothesis implies

n` 1 “ fpn´ 1q ` 1 “ f 3pn´ 2q “ f 2pn ´ 1q “ fpnq,

establishing the step. In this case we have obtained the first of two answers; checking that is
satisfies p˚q is straightforward.

Case 2. Assume now that f 2paq “ 0; then by (3) we get a “ fp0q ` 1. By (4) we get fpa ` 1q “
f 2paq “ 0, then fp0q “ f 3paq “ fpa` 1q ` 1 “ 1, hence a “ fp0q ` 1 “ 2 and fp2q “ 3 by (4). To
summarize,

fp0q “ 1, fp2q “ 3, fp3q “ 0.

Now let us prove by induction on m that (1) holds for all n “ 4k, 4k`2, 4k`3 with k ď m and
for all n “ 4k ` 1 with k ă m. The base case m “ 0 is established above. For the step, assume
that m ě 1. From p˚q we get f 3p4m ´ 3q “ fp4m´ 2q ` 1 “ 4m. Next, by (2) we have

fp4mq “ f 4p4m´ 3q “ f 4p4m´ 4q ` 1 “ f 3p4m´ 3q ` 1 “ 4m` 1.

Then by the induction hypothesis together with p˚q we successively obtain

fp4m´ 3q “ f 3p4m´ 1q “ fp4mq ` 1 “ 4m ` 2,

fp4m` 2q “ f 3p4m´ 4q “ fp4m´ 3q ` 1 “ 4m ` 3,

fp4m` 3q “ f 3p4m´ 3q “ fp4m´ 2q ` 1 “ 4m,

thus finishing the induction step.

Finally, it is straightforward to check that the constructed function works:

f 3p4kq “ 4k ` 7 “ fp4k ` 1q ` 1, f 3p4k ` 1q “ 4k ` 4 “ fp4k ` 2q ` 1,

f 3p4k ` 2q “ 4k ` 1 “ fp4k ` 3q ` 1, f 3p4k ` 3q “ 4k ` 6 “ fp4k ` 4q ` 1.

Solution 2. I. For convenience, let us introduce the function gpnq “ fpnq ` 1. Substituting fpnq
instead of n into p˚q we obtain

f 4pnq “ f
`

fpnq ` 1
˘

` 1, or f 4pnq “ g2pnq. (5)

Applying f to both parts of p˚q and using (5) we get

f 4pnq ` 1 “ f
`

fpn` 1q ` 1
˘

` 1 “ f 4pn` 1q. (6)

Thus, if g2p0q “ f 4p0q “ c then an easy induction on n shows that

g2pnq “ f 4pnq “ n ` c, n P Zě0. (7)
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This relation implies that both f and g are injective: if, say, fpmq “ fpnq then m ` c “
f 4pmq “ f 4pnq “ n ` c. Next, since gpnq ě 1 for every n, we have c “ g2p0q ě 1. Thus from (7)
again we obtain fpnq ‰ n and gpnq ‰ n for all n P Zě0.

II. Next, application of f and g to (7) yields

fpn` cq “ f 5pnq “ f 4pfpnqq “ fpnq ` c and gpn` cq “ g3pnq “ gpnq ` c. (8)

In particular, this means that if m ” n pmod cq then fpmq ” fpnq pmod cq. Conversely, if
fpmq ” fpnq pmod cq then we get m` c “ f 4pmq ” f 4pnq “ n ` c pmod cq. Thus,

m ” n pmod cq ðñ fpmq ” fpnq pmod cq ðñ gpmq ” gpnq pmod cq. (9)

Now, let us introduce the function δpnq “ fpnq ´ n “ gpnq ´ n´ 1. Set

S “
c´1
ÿ

n“0

δpnq.

Using (8), we get that for every complete residue system n1, . . . , nc modulo c we also have

S “
c
ÿ

i“1

δpniq.

By (9), we get that tfkpnq : n “ 0, . . . , c ´ 1u and tgkpnq : n “ 0, . . . , c ´ 1u are complete residue
systems modulo c for all k. Thus we have

c2 “
c´1
ÿ

n“0

`

f 4pnq ´ n
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

`

fk`1pnq ´ fkpnq
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

δpfkpnqq “ 4S

and similarly

c2 “
c´1
ÿ

n“0

`

g2pnq ´ n
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

gk`1pnq ´ gkpnq
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

δpgkpnqq ` 1
˘

“ 2S ` 2c.

Therefore c2 “ 4S “ 2 ¨ 2S “ 2pc2 ´ 2cq, or c2 “ 4c. Since c ‰ 0, we get c “ 4. Thus, in view of
(8) it is sufficient to determine the values of f on the numbers 0, 1, 2, 3.

III. Let d “ gp0q ě 1. Then gpdq “ g2p0q “ 0 ` c “ 4. Now, if d ě 4, then we would
have gpd ´ 4q “ gpdq ´ 4 “ 0 which is impossible. Thus d P t1, 2, 3u. If d “ 1 then we have
fp0q “ gp0q ´ 1 “ 0 which is impossible since fpnq ‰ n for all n. If d “ 3 then gp3q “ g2p0q “ 4
and hence fp3q “ 3 which is also impossible. Thus gp0q “ 2 and hence gp2q “ g2p0q “ 4.

Next, if gp1q “ 1 ` 4k for some integer k, then 5 “ g2p1q “ gp1 ` 4kq “ gp1q ` 4k “ 1 ` 8k
which is impossible. Thus, since tgpnq : n “ 0, 1, 2, 3u is a complete residue system modulo 4, we
get gp1q “ 3 ` 4k and hence gp3q “ g2p1q ´ 4k “ 5 ´ 4k, leading to k “ 0 or k “ 1. So, we obtain
iether

fp0q “ 1, fp1q “ 2, fp2q “ 3, fp3q “ 4, or fp0q “ 1, fp1q “ 6, fp2q “ 3, fp3q “ 0,

thus arriving to the two functions listed in the answer.

Finally, one can check that these two function work as in Solution 1. One may simplify the
checking by noticing that (8) allows us to reduce it to n “ 0, 1, 2, 3.
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A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq (1)

for all real numbers x.

(Serbia)

Answer. P pxq “ tx for any real number t.

Solution. Let P pxq “ anx
n ` ¨ ¨ ¨ ` a0x

0 with an ‰ 0. Comparing the coefficients of xn`1 on both
sides gives anpn´ 2mqpn´ 1q “ 0, so n “ 1 or n “ 2m.

If n “ 1, one easily verifies that P pxq “ x is a solution, while P pxq “ 1 is not. Since the given
condition is linear in P , this means that the linear solutions are precisely P pxq “ tx for t P R.

Now assume that n “ 2m. The polynomial xP px ` 1q ´ px ` 1qP pxq “ pn ´ 1qanxn ` ¨ ¨ ¨
has degree n, and therefore it has at least one (possibly complex) root r. If r R t0,´1u, define
k “ P prq{r “ P pr ` 1q{pr ` 1q. If r “ 0, let k “ P p1q. If r “ ´1, let k “ ´P p´1q. We now
consider the polynomial Spxq “ P pxq ´ kx. It also satisfies (1) because P pxq and kx satisfy it.
Additionally, it has the useful property that r and r ` 1 are roots.

Let Apxq “ x3 ´ mx2 ` 1 and Bpxq “ x3 ` mx2 ` 1. Plugging in x “ s into (1) implies that:

If s ´ 1 and s are roots of S and s is not a root of A, then s ` 1 is a root of S.

If s and s ` 1 are roots of S and s is not a root of B, then s ´ 1 is a root of S.

Let a ě 0 and b ě 1 be such that r ´ a, r ´ a` 1, . . . , r, r ` 1, . . . , r ` b ´ 1, r ` b are roots of S,
while r ´ a ´ 1 and r ` b ` 1 are not. The two statements above imply that r ´ a is a root of B
and r ` b is a root of A.

Since r ´ a is a root of Bpxq and of Apx ` a ` bq, it is also a root of their greatest common
divisor Cpxq as integer polynomials. If Cpxq was a non-trivial divisor of Bpxq, then B would have
a rational root α. Since the first and last coefficients of B are 1, α can only be 1 or ´1; but
Bp´1q “ m ą 0 and Bp1q “ m` 2 ą 0 since n “ 2m.

Therefore Bpxq “ Apx ` a` bq. Writing c “ a` b ě 1 we compute

0 “ Apx` cq ´ Bpxq “ p3c´ 2mqx2 ` cp3c´ 2mqx` c2pc´ mq.

Then we must have 3c´ 2m “ c ´ m “ 0, which gives m “ 0, a contradiction. We conclude that
fpxq “ tx is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

xpx3 ´ mx2 ` 1qP px` 1q ` xpx3 ` mx2 ` 1qP px´ 1q “ rpx ` 1q ` px´ 1qs px3 ´ mx ` 1qP pxq.

After regrouping, it becomes

px3 ´ mx2 ` 1qQpxq “ px3 ` mx2 ` 1qQpx´ 1q, (2)

where Qpxq “ xP px ` 1q ´ px ` 1qP pxq. If degP ě 2 then degQ “ deg P , so Qpxq has a finite
multiset of complex roots, which we denote RQ. Each root is taken with its multiplicity. Then the
multiset of complex roots of Qpx ´ 1q is RQ ` 1 “ tz ` 1 : z P RQu.
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Let tx1, x2, x3u and ty1, y2, y3u be the multisets of roots of the polynomials Apxq “ x3 ´mx2 `1
and Bpxq “ x3 ` mx2 ` 1, respectively. From (2) we get the equality of multisets

tx1, x2, x3u Y RQ “ ty1, y2, y3u Y pRQ ` 1q.

For every r P RQ, since r ` 1 is in the set of the right hand side, we must have r ` 1 P RQ or
r ` 1 “ xi for some i. Similarly, since r is in the set of the left hand side, either r ´ 1 P RQ or
r “ yi for some i. This implies that, possibly after relabelling y1, y2, y3, all the roots of (2) may
be partitioned into three chains of the form tyi, yi ` 1, . . . , yi ` ki “ xiu for i “ 1, 2, 3 and some
integers k1, k2, k3 ě 0.

Now we analyze the roots of the polynomial Aapxq “ x3 `ax2 `1. Using calculus or elementary
methods, we find that the local extrema of Aapxq occur at x “ 0 and x “ ´2a{3; their values are
Aap0q “ 1 ą 0 and Aap´2a{3q “ 1` 4a3{27, which is positive for integers a ě ´1 and negative for
integers a ď ´2. So when a P Z, Aa has three real roots if a ď ´2 and one if a ě ´1.

Now, since yi ´ xi P Z for i “ 1, 2, 3, the cubics Am and A´m must have the same number of
real roots. The previous analysis then implies that m “ 1 or m “ ´1. Therefore the real root α of
A1pxq “ x3 `x2 ` 1 and the real root β of A´1pxq “ x3 ´x2 ` 1 must differ by an integer. But this
is impossible, because A1

`

´3

2

˘

“ ´1

8
and A1p´1q “ 1 so ´1.5 ă α ă ´1, while A´1p´1q “ ´1

and A´1

`

´1

2

˘

“ 5

8
, so ´1 ă β ă ´0.5.

It follows that deg P ď 1. Then, as shown in Solution 1, we conclude that the solutions are
P pxq “ tx for all real numbers t.
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

Answer. k “ 2n´ 1.

Solution 1. If d “ 2n´ 1 and a1 “ ¨ ¨ ¨ “ a2n´1 “ n{p2n´ 1q, then each group in such a partition
can contain at most one number, since 2n{p2n´ 1q ą 1. Therefore k ě 2n´ 1. It remains to show
that a suitable partition into 2n´ 1 groups always exists.

We proceed by induction on d. For d ď 2n ´ 1 the result is trivial. If d ě 2n, then since

pa1 ` a2q ` . . .` pa2n´1 ` a2nq ď n

we may find two numbers ai, ai`1 such that ai ` ai`1 ď 1. We “merge” these two numbers into
one new number ai ` ai`1. By the induction hypothesis, a suitable partition exists for the d ´ 1
numbers a1, . . . , ai´1, ai ` ai`1, ai`2, . . . , ad. This induces a suitable partition for a1, . . . , ad.

Solution 2. We will show that it is even possible to split the sequence a1, . . . , ad into 2n ´ 1
contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a
segment S of length n, and partition it into segments S1, . . . , Sd of lengths a1, . . . , ad, respectively,
as shown below. Consider a second partition of S into n equal parts by n´ 1 “empty dots”.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Assume that the n´ 1 empty dots are in segments Si1, . . . , Sin´1
. (If a dot is on the boundary

of two segments, we choose the right segment). These n ´ 1 segments are distinct because they
have length at most 1. Consider the partition:

ta1, . . . , ai1´1u, tai1u, tai1`1, . . . , ai2´1u, tai2u, . . . tain´1
u, tain´1`1, . . . , adu.

In the example above, this partition is ta1, a2u, ta3u, ta4, a5u, ta6u,H, ta7u, ta8, a9, a10u. We claim
that in this partition, the sum of the numbers in this group is at most 1.

For the sets taitu this is obvious since ait ď 1. For the sets tait ` 1, . . . , ait`1´1u this follows
from the fact that the corresponding segments lie between two neighboring empty dots, or between
an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than 1

2
in their own groups. Then, form the remaining

groups as follows: For each group, add new ais one at a time until their sum exceeds 1

2
. Since the

last summand is at most 1

2
, this group has sum at most 1. Continue this procedure until we have

used all the ais. Notice that the last group may have sum less than 1

2
. If the sum of the numbers

in the last two groups is less than or equal to 1, we merge them into one group. In the end we are
left with m groups. If m “ 1 we are done. Otherwise the first m´ 2 have sums greater than 1

2
and

the last two have total sum greater than 1. Therefore n ą pm´ 2q{2` 1 so m ď 2n´ 1 as desired.
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Comment 1. The original proposal asked for the minimal value of k when n “ 2.

Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose
sum is a real number r. In this case the smallest value of k is k “ r2rs ´ 1, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound k ď 2rrs ´ 1. This is actually the optimal bound
for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see
this, assume that r is not an integer and let c “ pr ` 1 ´ rrsq{p1 ` rrsq. One easily checks that 0 ă c ă 1

2

and rrsp2cq ` prrs ´ 1qp1 ´ cq “ r, so the sequence

2c, 1 ´ c, 2c, 1 ´ c, . . . , 1 ´ c, 2c

of 2rrs ´ 1 numbers satisfies the given conditions. For this sequence, the only suitable partition into
consecutive groups is the trivial partition, which requires 2rrs ´ 1 groups.
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C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

Answer. k “ 2013.

Solution 1. Firstly, let us present an example showing that k ě 2013. Mark 2013 red and 2013
blue points on some circle alternately, and mark one more blue point somewhere in the plane. The
circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is
reached, then each arc should intersect some of the drawn lines. Since any line contains at most
two points of the circle, one needs at least 4026{2 “ 2013 lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention
that for every two points A and B having the same color, one can draw two lines separating these
points from all other ones. Namely, it suffices to take two lines parallel to AB and lying on different
sides of AB sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.

Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the
other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the
other points by two lines. Thus, 2013 lines will be used.

Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices
of P , say A and B. One may separate these two points from the others by a line parallel to AB.
Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and
separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked
points A and B such that all the other marked points are on one side of this line. If one of A and B is
red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.

Solution 2. Let us present a different proof of the fact that k “ 2013 suffices. In fact, we will
prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily,
then it suffices to draw tn{2u lines to reach the goal.

We proceed by induction on n. If n ď 2 then the statement is obvious. Now assume that n ě 3,
and consider a line ℓ containing two marked points A and B such that all the other marked points
are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining
configuration it suffices to draw tn{2u ´ 1 lines to reach the goal. Now return the points A and B
back. Three cases are possible.

Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A
and B from the other points. Obviously, the obtained configuration of tn{2u lines works.

Case 2. If A and B have different colors, but they are separated by some drawn line, then again
the same line parallel to ℓ works.



24 IMO 2013 Colombia

Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by
the drawn lines. By the induction assumption, this region contains no other points of one of the
colors — without loss of generality, the only blue point it contains is A. Then it suffices to draw
a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any
positive integers m and n, say with m ď n. Denote the answer for this problem by fpm,nq.

One may show along the lines of Solution 1 that m ď fpm,nq ď m ` 1; moreover, if m is even then
fpm,nq “ m. On the other hand, for every odd m there exists an N such that fpm,nq “ m for all
m ď n ď N , and fpm,nq “ m` 1 for all n ą N .
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C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected
if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its
vertices in several colors so that every two connected vertices have different colors.

Lemma. Assume that a graph G admits a proper coloring in n colors (n ą 1). Then one may
perform a sequence of operations resulting in a graph which admits a proper coloring in n ´ 1
colors.

Proof. Let us apply repeatedly operation piq to any appropriate vertices while it is possible. Since
the number of vertices decreases, this process finally results in a graph where all the degrees are
even. Surely this graph also admits a proper coloring in n colors 1, . . . , n; let us fix this coloring.

Now apply the operation piiq to this graph. A proper coloring of the resulting graph in n

colors still exists: one may preserve the colors of the original vertices and color the vertex I 1 in
a color k ` 1 pmod nq if the vertex I has color k. Then two connected original vertices still have
different colors, and so do their two connected copies. On the other hand, the vertices I and I 1

have different colors since n ą 1.
All the degrees of the vertices in the resulting graph are odd, so one may apply operation piq

to delete consecutively all the vertices of color n one by one; no two of them are connected by
an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a
proper coloring in n ´ 1 colors, as required. The lemma is proved. l

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors.
Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color,
that is — a graph with no edges, as required.

Solution 2. Again, we will use the graph language.

I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G˝ is obtained from G

by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with
no edges from G˝, then such a sequence also exists for G.

Proof. Consider any operation applicable to G˝ resulting in a graph G˝
1
; then there exists a sequence

of operations applicable to G and resulting in a graph G1 differing from G˝
1
by an addition of an

isolated vertex A. Indeed, if this operation is of type piq, then one may simply repeat it in G.
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Otherwise, the operation is of type piiq, and one may apply it to G and then delete the vertex A1

(it will have degree 1).
Thus one may change the process for G˝ into a corresponding process for G step by step. l

In view of this lemma, if at some moment a graph contains some isolated vertex, then we may
simply delete it; let us call this operation piiiq.
II. Let V “ tA0

1
, . . . , A0

nu be the vertices of the initial graph. Let us describe which graphs can
appear during our operations. Assume that operation piiq was applied m times. If these were
the only operations applied, then the resulting graph Gm

n has the set of vertices which can be
enumerated as

V m
n “ tAj

i : 1 ď i ď n, 0 ď j ď 2m ´ 1u,
where A0

i is the common “ancestor” of all the vertices Aj
i , and the binary expansion of j (adjoined

with some zeroes at the left to have m digits) “keeps the history” of this vertex: the dth digit from
the right is 0 if at the dth doubling the ancestor of Aj

i was in the original part, and this digit is 1
if it was in the copy.

Next, the two vertices Aj
i and A

ℓ
k in Gm

n are connected with an edge exactly if either (1) j “ ℓ

and there was an edge between A0

i and A0

k (so these vertices appeared at the same application of
operation piiq); or (2) i “ k and the binary expansions of j and ℓ differ in exactly one digit (so
their ancestors became connected as a copy and the original vertex at some application of piiq).

Now, if some operations piq were applied during the process, then simply some vertices in Gm
n

disappeared. So, in any case the resulting graph is some induced subgraph of Gm
n .

III. Finally, we will show that from each (not necessarily induced) subgraph of Gm
n one can obtain

a graph with no vertices by applying operations piq, piiq and piiiq. We proceed by induction on n;
the base case n “ 0 is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph
containing no vertices of the form Aj

n for j P Z. We will do this in three steps.

Step 1. We apply repeatedly operation piq to any appropriate vertices while it is possible. In the
resulting graph, all vertices have even degrees.

Step 2. Apply operation piiq obtaining a subgraph of Gm`1

n with all degrees being odd. In this
graph, we delete one by one all the vertices Aj

n where the sum of the binary digits of j is even; it
is possible since there are no edges between such vertices, so all their degrees remain odd. After
that, we delete all isolated vertices.

Step 3. Finally, consider any remaining vertex Aj
n (then the sum of digits of j is odd). If its

degree is odd, then we simply delete it. Otherwise, since Aj
n is not isolated, we consider any vertex

adjacent to it. It has the form A
j
k for some k ă n (otherwise it would have the form Aℓ

n, where ℓ
has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of Aj

k

was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete Aj
k and Aj

n.
Notice that this deletion does not affect the applicability of this step to other vertices, since

no two vertices Aj
i and A

ℓ
k for different j, ℓ with odd digit sum are connected with an edge. Thus

we will delete all the remaining vertices of the form Aj
n, obtaining a subgraph of Gm`1

n´1
. The

application of the induction hypothesis finishes the proof.

Comment. In fact, the graph Gm
n is a Cartesian product of G and the graph of an m-dimensional

hypercube.
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C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let kmin

be the minimum number of parts in an A-partition of n, and let n “ a1 ` ¨ ¨ ¨ ` akmin
be an

optimal partition. Denote by s the number of different parts in this partition, so we can write
S “ ta1, . . . , akmin

u “ tb1, . . . , bsu for some pairwise different numbers b1 ă ¨ ¨ ¨ ă bs in A.
If s ą 3

?
6n, we will prove that there exist subsets X and Y of S such that |X| ă |Y | and

ř

xPX x “ ř

yPY y. Then, deleting the elements of Y from our partition and adding the elements of
X to it, we obtain an A-partition of n into less than kmin parts, which is the desired contradiction.

For each positive integer k ď s, we consider the k-element subset

Sk
1,0 :“ tb1, . . . , bku

as well as the following k-element subsets Sk
i,j of S:

Sk
i,j :“

 

b1, . . . , bk´i, bk´i`j`1, bs´i`2, . . . , bs
(

, i “ 1, . . . , k, j “ 1, . . . , s ´ k.

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent
a subset of S by shading in the appropriate dots, we have:

Sk
i,j “ ‚ ‚ ‚ ‚ ‚ ‚ ‚

looooomooooon

k´i

˝ ˝ ˝ ˝ ˝
looomooon

j

‚ ˝ ˝ ˝ ˝ ˝ ˝ ˝
looooomooooon

s´k´j

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
looooooomooooooon

i´1

Denote by Σk
i,j the sum of elements in Sk

i,j. Clearly, Σk
1,0 is the minimum sum of a k-element

subset of S. Next, for all appropriate indices i and j we have

Σk
i,j “ Σk

i,j`1
` bk´i`j`1 ´ bk´i`j`2 ă Σk

i,j`1
and Σk

i,s´k “ Σk
i`1,1 ` bk´i ´ bk´i`1 ă Σk

i`1,1.

Therefore

1 ď Σk
1,0 ă Σk

1,1 ă Σk
1,2 ă ¨ ¨ ¨ ă Σk

1,s´k ă Σk
2,1 ă ¨ ¨ ¨ ă Σk

2,s´k ă Σk
3,1 ă ¨ ¨ ¨ ă Σk

k,s´k ď n.

To see this in the picture, we start with the k leftmost points marked. At each step, we look for
the rightmost point which can move to the right, and move it one unit to the right. We continue
until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found kps ´ kq ` 1 different integers of the form Σk
i,j between 1 and n. As

we vary k, the total number of integers we are considering is
s
ÿ

k“1

`

kps ´ kq ` 1
˘

“ s ¨ sps ` 1q
2

´ sps ` 1qp2s` 1q
6

` s “ sps2 ` 5q
6

ą s3

6
ą n.

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist
1 ď k ă k1 ď s and X “ Sk

i,j as well as Y “ Sk1

i1,j1 such that
ÿ

xPX

x “
ÿ

yPY

y, but |X| “ k ă k1 “ |Y |,

as required. The result follows.
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Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum
number n for which it fails. So there exists a set A Ď t1, . . . , nu together with an optimal A-
partition n “ a1 ` ¨ ¨ ¨ ` akmin

of n refuting our statement, where, of course, kmin is the minimum
number of parts in an A-partition of n. Again, we define S “ ta1, . . . , akmin

u “ tb1, . . . , bsu with
b1 ă ¨ ¨ ¨ ă bs; by our assumption we have s ą 3

?
6n ą 1. Without loss of generality we assume

that akmin
“ bs. Let us distinguish two cases.

Case 1. bs ě sps´1q
2

` 1.
Consider the partition n ´ bs “ a1 ` ¨ ¨ ¨ ` akmin´1, which is clearly a minimum A-partition

of n´ bs with at least s ´ 1 ě 1 different parts. Now, from n ă s3

6
we obtain

n´ bs ď n´ sps ´ 1q
2

´ 1 ă s3

6
´ sps ´ 1q

2
´ 1 ă ps ´ 1q3

6
,

so s ´ 1 ą 3

a

6pn´ bsq, which contradicts the choice of n.

Case 2. bs ď sps´1q
2

.

Set b0 “ 0, Σ0,0 “ 0, and Σi,j “ b1`¨ ¨ ¨`bi´1`bj for 1 ď i ď j ă s. There are sps´1q
2

`1 ą bs such
sums; so at least two of them, say Σi,j and Σi1,j1, are congruent modulo bs (where pi, jq ‰ pi1, j1q).
This means that Σi,j ´ Σi1,j1 “ rbs for some integer r. Notice that for i ď j ă k ă s we have

0 ă Σi,k ´ Σi,j “ bk ´ bj ă bs,

so the indices i and i1 are distinct, and we may assume that i ą i1. Next, we observe that
Σi,j ´ Σi1,j1 “ pbi1 ´ bj1q ` bj ` bi1`1 ` ¨ ¨ ¨ ` bi´1 and bi1 ď bj1 imply

´bs ă ´bj1 ă Σi,j ´ Σi1,j1 ă pi ´ i1qbs,

so 0 ď r ď i´ i1 ´ 1.
Thus, we may remove the i terms of Σi,j in our A-partition, and replace them by the i1 terms

of Σi1,j1 and r terms equal to bs, for a total of r ` i1 ă i terms. The result is an A-partition of n
into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in
the problem has the correct order of magnitude:

For every positive integer n, there exist a set A and an optimal A-partition of n that contains t 3
?
2nu

different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less
suitable for the competiton; but for completeness we provide an outline of its proof here.

Let k “ t 3
?
2nu ´ 1. The statement is trivial for n ă 4, so we assume n ě 4 and hence k ě 1. Let

h “ tn´1

k
u. Notice that h ě n

k
´ 1.

Now let A “ t1, . . . , hu, and set a1 “ h, a2 “ h´1, . . . , ak “ h´k`1, and ak`1 “ n´ pa1 ` ¨ ¨ ¨ `akq.
It is not difficult to prove that ak ą ak`1 ě 1, which shows that

n “ a1 ` . . . ` ak`1

is an A-partition of n into k`1 different parts. Since kh ă n, any A-partition of n has at least k`1 parts.
Therefore our A-partition is optimal, and it has t 3

?
2nu distinct parts, as desired.
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C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)

Solution. For every indices m ď n we will denote Spm,nq “ am ` am`1 ` ¨ ¨ ¨ ` an´1; thus
Spn, nq “ 0. Let us start with the following lemma.

Lemma. Let b0, b1, . . . be an infinite sequence. Assume that for every nonnegative integer m there
exists a nonnegative integer n P rm ` 1, m ` rs such that bm “ bn. Then for every indices k ď ℓ

there exists an index t P rℓ, ℓ ` r ´ 1s such that bt “ bk. Moreover, there are at most r distinct
numbers among the terms of pbiq.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices
k1 “ k, k2, k3, . . . such that bk1 “ bk2 “ ¨ ¨ ¨ “ bk and ki ă ki`1 ď ki ` r for all i ě 1. This sequence
is unbounded from above, thus it hits each segment of the form rℓ, ℓ`r´1s with ℓ ě k, as required.

To prove the second claim, assume, to the contrary, that there exist r ` 1 distinct numbers
bi1 , . . . , bir`1

. Let us apply the first claim to k “ i1, . . . , ir`1 and ℓ “ maxti1, . . . , ir`1u; we obtain
that for every j P t1, . . . , r` 1u there exists tj P rs, s` r´ 1s such that btj “ bij . Thus the segment
rs, s ` r ´ 1s should contain r ` 1 distinct integers, which is absurd. l

Setting s “ 0 in the problem condition, we see that the sequence paiq satisfies the condi-
tion of the lemma, thus it attains at most r distinct values. Denote by Ai the ordered r-tuple
pai, . . . , ai`r´1q; then among Ai’s there are at most rr distinct tuples, so for every k ě 0 two of the
tuples Ak, Ak`1, . . . , Ak`rr are identical. This means that there exists a positive integer p ď rr such
that the equality Ad “ Ad`p holds infinitely many times. Let D be the set of indices d satisfying
this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded,
it suffices to show that d P D whenever d ` 1 P D. For that, denote bk “ Spk, p ` kq. The
sequence b0, b1, . . . satisfies the lemma conditions, so there exists an index t P rd ` 1, d ` rs such
that Spt, t ` pq “ Spd, d ` pq. This last relation rewrites as Spd, tq “ Spd ` p, t ` pq. Since
Ad`1 “ Ad`p`1, we have Spd` 1, tq “ Spd ` p ` 1, t` pq, therefore we obtain

ad “ Spd, tq ´ Spd` 1, tq “ Spd ` p, t` pq ´ Spd` p ` 1, t` pq “ ad`p

and thus Ad “ Ad`p, as required.

Finally, we get Ad “ Ad`p for all d, so in particular ad “ ad`p for all d, QED.

Comment 1. In the present proof, the upper bound for the minimal period length is rr. This bound is
not sharp; for instance, one may improve it to pr ´ 1qr for r ě 3..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to
check that the sequence with period p3,´3, 3,´3, 3,´1,´1,´1q satisfies the problem condition for r “ 7.

Comment 2. The conclusion remains true even if the problem condition only holds for every s ě N for
some positive integer N . To show that, one can act as follows. Firstly, the sums of the form Spi, i `Nq
attain at most r values, as well as the sums of the form Spi, i`N`1q. Thus the terms ai “ Spi, i `N ` 1q´
Spi ` 1, i `N ` 1q attain at most r2 distinct values. Then, among the tuples Ak, Ak`N , . . . , Ak`r2rN two
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are identical, so for some p ď r2r the set D “ td : Ad “ Ad`Npu is infinite. The further arguments apply
almost literally, with p being replaced by Np.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for
the minimal period length to rr — essentially by verifying that the sequence satisfies the original version
of the condition.
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

Solution. Let us denote by dpa, bq the distance between the cities a and b, and by

Sipaq “ tc : dpa, cq “ iu

the set of cities at distance exactly i from city a.
Assume that for some city x the set D “ S4pxq has size at least 2551. Let A “ S1pxq. A

subset A1 of A is said to be substantial, if every city in D can be reached from x with four flights
while passing through some member of A1; in other terms, every city in D has distance 3 from
some member of A1, or D Ď Ť

aPA1 S3paq. For instance, A itself is substantial. Now let us fix some
substantial subset A˚ of A having the minimal cardinality m “ |A˚|.

Since

mp101 ´ mq ď 50 ¨ 51 “ 2550,

there has to be a city a P A˚ such that |S3paq X D| ě 102 ´ m. As |S3paq| ď 100, we obtain
that S3paq may contain at most 100 ´ p102 ´ mq “ m ´ 2 cities c with dpc, xq ď 3. Let us
denote by T “ tc P S3paq : dpx, cq ď 3u the set of all such cities, so |T | ď m ´ 2. Now, to get a
contradiction, we will construct m´ 1 distinct elements in T , corresponding to m´ 1 elements of
the set Aa “ A˚ztau.

Firstly, due to the minimality of A˚, for each y P Aa there exists some city dy P D which can
only be reached with four flights from x by passing through y. So, there is a way to get from x to
dy along x–y–by–cy–dy for some cities by and cy; notice that dpx, byq “ 2 and dpx, cyq “ 3 since this
path has the minimal possible length.

Now we claim that all 2pm ´ 1q cities of the form by, cy with y P Aa are distinct. Indeed,
no by may coincide with any cz since their distances from x are different. On the other hand, if
one had by “ bz for y ‰ z, then there would exist a path of length 4 from x to dz via y, namely
x–y–bz–cz–dz; this is impossible by the choice of dz. Similarly, cy ‰ cz for y ‰ z.

So, it suffices to prove that for every y P Aa, one of the cities by and cy has distance 3
from a (and thus belongs to T ). For that, notice that dpa, yq ď 2 due to the path a–x–y, while
dpa, dyq ě dpx, dyq ´ dpx, aq “ 3. Moreover, dpa, dyq ‰ 3 by the choice of dy; thus dpa, dyq ą 3.
Finally, in the sequence dpa, yq, dpa, byq, dpa, cyq, dpa, dyq the neighboring terms differ by at most 1,
the first term is less than 3, and the last one is greater than 3; thus there exists one which is equal
to 3, as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of
them is the “Roman Empire”: it has one capital, called “Rome”, that is connected to 51 semicapitals by
internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities
by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size
of S1pxq or S2pxq.
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Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced

by n and
Y

pn`1q2

4

]

for any positive integer n. Still more generally, one can also replace the pair p3, 4q of

distances under consideration by any pair pr, sq of positive integers satisfying r ă s ď 3

2
r.

To adapt the above proof to this situation, one takes A “ Ss´rpxq and defines the concept of substan-
tiality as before. Then one takes A˚ to be a minimal substantial subset of A, and for each y P A˚ one
fixes an element dy P Sspxq which is only reachable from x by a path of length s by passing through y.
As before, it suffices to show that for distinct a, y P A˚ and a path y “ y0 ´ y1 ´ . . . ´ yr “ dy, at least
one of the cities y0, . . . , yr´1 has distance r from a. This can be done as above; the relation s ď 3

2
r is

used here to show that dpa, y0q ď r.

Moreover, the estimate
Y

pn`1q2

4

]

is also sharp for every positive integer n and every positive integers

r, s with r ă s ď 3

2
r. This may be shown by an example similar to that in the previous comment.
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C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

Solution 1. Given a circular arrangement of r0, ns “ t0, 1, . . . , nu, we define a k-chord to be
a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three
chords of a circle are aligned if one of them separates the other two. Say that m ě 3 chords
are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C are aligned,
while B, C, and D are not.

A

B

C

D

AB

C

D

E

0 n
u v

t
n− t

Figure 1 Figure 2

Claim. In a beautiful arrangement, the k–chords are aligned for any integer k.

Proof. We proceed by induction. For n ď 3 the statement is trivial. Now let n ě 4, and proceed
by contradiction. Consider a beautiful arrangement S where the three k–chords A, B, C are not
aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain
a beautiful arrangement Sztnu of r0, n ´ 1s, where A, B, and C are aligned by the induction
hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the
numbers by 1 gives a beautiful arrangement Szt0u where A, B, and C are aligned. Therefore
both 0 and n are among the endpoints of these segments. If x and y are their respective partners,
we have n ě 0 ` x “ k “ n ` y ě n. Thus 0 and n are the endpoints of one of the chords; say it
is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the
same side of C as A and B, as shown in Figure 2. Set t “ u` v. If we had t “ n, the n–chords A,
B, and D would not be aligned in the beautiful arrangement Szt0, nu, contradicting the induction
hypothesis. If t ă n, then the t-chord from 0 to t cannot intersect D, so the chord C separates t
and D. The chord E from t to n´ t does not intersect C, so t and n´ t are on the same side of C.
But then the chords A, B, and E are not aligned in Szt0, nu, a contradiction. Finally, the case
t ą n is equivalent to the case t ă n via the beauty-preserving relabelling x ÞÑ n´x for 0 ď x ď n,
which sends t-chords to p2n ´ tq–chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case n “ 2 is
trivial. Now assume that n ě 3. Let S be a beautiful arrangement of r0, ns and delete n to obtain
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the beautiful arrangement T of r0, n´ 1s. The n–chords of T are aligned, and they contain every
point except 0. Say T is of Type 1 if 0 lies between two of these n–chords, and it is of Type 2
otherwise; i.e., if 0 is aligned with these n–chords. We will show that each Type 1 arrangement
of r0, n´ 1s arises from a unique arrangement of r0, ns, and each Type 2 arrangement of r0, n´ 1s
arises from exactly two beautiful arrangements of r0, ns.

If T is of Type 1, let 0 lie between chords A and B. Since the chord from 0 to n must be
aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be
recovered uniquely from T . In the other direction, if T is of Type 1 and we insert n as above,
then we claim the resulting arrangement S is beautiful. For 0 ă k ă n, the k–chords of S are also
k–chords of T , so they are aligned. Finally, for n ă k ă 2n, notice that the n–chords of S are
parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to n´x with
respect to ℓ for all x. If we had two k–chords which intersect, then their reflections across ℓ would
be two p2n ´ kq-chords which intersect, where 0 ă 2n´ k ă n, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0. As above, we
check that both positions lead to beautiful arrangements of r0, ns.

Hence if we letMn be the number of beautiful arrangements of r0, ns, and let Ln be the number
of beautiful arrangements of r0, n´ 1s of Type 2, we have

Mn “ pMn´1 ´ Ln´1q ` 2Ln´1 “ Mn´1 ` Ln´1.

It then remains to show that Ln´1 is the number of pairs px, yq of positive integers with x` y “ n

and gcdpx, yq “ 1. Since n ě 3, this number equals ϕpnq “ #tx : 1 ď x ď n, gcdpx, nq “ 1u.
To prove this, consider a Type 2 beautiful arrangement of r0, n ´ 1s. Label the positions

0, . . . , n ´ 1 pmod nq clockwise around the circle, so that number 0 is in position 0. Let fpiq be
the number in position i; note that f is a permutation of r0, n ´ 1s. Let a be the position such
that fpaq “ n´ 1.

Since the n–chords are aligned with 0, and every point is in an n–chord, these chords are all
parallel and

fpiq ` fp´iq “ n for all i.

Similarly, since the pn´ 1q–chords are aligned and every point is in an pn´ 1q–chord, these chords
are also parallel and

fpiq ` fpa´ iq “ n ´ 1 for all i.

Therefore fpa´ iq “ fp´iq ´ 1 for all i; and since fp0q “ 0, we get

fp´akq “ k for all k. (1)

Recall that this is an equality modulo n. Since f is a permutation, we must have pa, nq “ 1. Hence
Ln´1 ď ϕpnq.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider
four numbers w, x, y, z on the circle with w ` y “ x ` z. Their positions around the circle satisfy
p´awq ` p´ayq “ p´axq ` p´azq, which means that the chord from w to y and the chord from
x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result
follows.
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Solution 2. Notice that there are exactly N irreducible fractions f1 ă ¨ ¨ ¨ ă fN in p0, 1q whose
denominator is at most n, since the pair px, yq with x ` y ď n and px, yq “ 1 corresponds to the
fraction x{px ` yq. Write fi “ ai

bi
for 1 ď i ď N .

We begin by constructing N ` 1 beautiful arrangements. Take any α P p0, 1q which is not one
of the above N fractions. Consider a circle of perimeter 1. Successively mark points 0, 1, 2, . . . , n
where 0 is arbitrary, and the clockwise distance from i to i`1 is α. The point k will be at clockwise
distance tkαu from 0, where tru denotes the fractional part of r. Call such a circular arrangement
cyclic and denote it by Apαq. If the clockwise order of the points is the same in Apα1q and Apα2q,
we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement Ap3{5`ǫq
of r0, 13s where ǫ ą 0 is very small.
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Figure 3

If 0 ď a, b, c, d ď n satisfy a` c “ b ` d, then aα ` cα “ bα ` dα, so the chord from a to c is
parallel to the chord from b to d in Apαq. Hence in a cyclic arrangement all k—chords are parallel.
In particular every cyclic arrangement is beautiful.

Next we show that there are exactly N ` 1 distinct cyclic arrangements. To see this, let us
see how Apαq changes as we increase α from 0 to 1. The order of points p and q changes precisely
when we cross a value α “ f such that tpfu “ tqfu; this can only happen if f is one of the N
fractions f1, . . . , fN . Therefore there are at most N ` 1 different cyclic arrangements.

To show they are all distinct, recall that fi “ ai{bi and let ǫ ą 0 be a very small number. In

the arrangement Apfi ` ǫq, point k lands at kai pmod biq
bi

` kǫ. Therefore the points are grouped

into bi clusters next to the points 0, 1

bi
, . . . , bi´1

bi
of the circle. The cluster following k

bi
contains the

numbers congruent to ka´1

i modulo bi, listed clockwise in increasing order. It follows that the first
number after 0 in Apfi ` ǫq is bi, and the first number after 0 which is less than bi is a

´1

i pmod biq,
which uniquely determines ai. In this way we can recover fi from the cyclic arrangement. Note
also that Apfi ` ǫq is not the trivial arrangement where we list 0, 1, . . . , n in order clockwise. It
follows that the N ` 1 cyclic arrangements Apǫq, Apf1 ` ǫq, . . . , ApfN ` ǫq are distinct.

Let us record an observation which will be useful later:

if fi ă α ă fi`1 then 0 is immediately after bi`1 and before bi in Apαq. (2)

Indeed, we already observed that bi is the first number after 0 in Apfi ` ǫq “ Apαq. Similarly we
see that bi`1 is the last number before 0 in Apfi`1 ´ ǫq “ Apαq.
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Finally, we show that any beautiful arrangement of r0, ns is cyclic by induction on n. For n ď 2
the result is clear. Now assume that all beautiful arrangements of r0, n´1s are cyclic, and consider
a beautiful arrangement A of r0, ns. The subarrangement An´1 “ Aztnu of r0, n´ 1s obtained by
deleting n is cyclic; say An´1 “ An´1pαq.

Let α be between the consecutive fractions p1
q1

ă p2
q2

among the irreducible fractions of de-

nominator at most n ´ 1. There is at most one fraction i
n
in pp1

q1
, p2
q2

q, since i
n

ă i
n´1

ď i`1

n
for

0 ă i ď n´ 1.

Case 1. There is no fraction with denominator n between p1
q1

and p2
q2
.

In this case the only cyclic arrangement extending An´1pαq is Anpαq. We know that A and
Anpαq can only differ in the position of n. Assume n is immediately after x and before y in Anpαq.
Since the neighbors of 0 are q1 and q2 by (2), we have x, y ě 1.

x

n

y x− 1

n− 1

y − 1

Figure 4

In Anpαq the chord from n´1 to x is parallel and adjacent to the chord from n to x´1, so n´1
is between x ´ 1 and x in clockwise order, as shown in Figure 4. Similarly, n ´ 1 is between y

and y ´ 1. Therefore x, y, x ´ 1, n ´ 1, and y ´ 1 occur in this order in Anpαq and hence in A
(possibly with y “ x ´ 1 or x “ y ´ 1).

Now, A may only differ from Anpαq in the location of n. In A, since the chord from n ´ 1
to x and the chord from n to x ´ 1 do not intersect, n is between x and n ´ 1. Similarly, n is
between n ´ 1 and y. Then n must be between x and y and A “ Anpαq. Therefore A is cyclic as
desired.

Case 2. There is exactly one i with p1
q1

ă i
n

ă p2
q2
.

In this case there exist two cyclic arrangements Anpα1q and Anpα2q of the numbers 0, . . . , n
extending An´1pαq, where p1

q1
ă α1 ă i

n
and i

n
ă α2 ă p2

q2
. In An´1pαq, 0 is the only number

between q2 and q1 by (2). For the same reason, n is between q2 and 0 in Anpα1q, and between 0
and q1 in Anpα2q.

Letting x “ q2 and y “ q1, the argument of Case 1 tells us that n must be between x and y
in A. Therefore A must equal Anpα1q or Anpα2q, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are
exactly N ` 1 beautiful arrangements of r0, ns as we wished to show.
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C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)

Answer. No. Such a strategy for player A does not exist.

Solution. We will present a strategy for player B that guarantees that the interval r0, 1s is com-
pletely blackened, once the paint pot has become empty.

At the beginning of round r, let xr denote the largest real number for which the interval
between 0 and xr has already been blackened; for completeness we define x1 “ 0. Let m be the
integer picked by player A in this round; we define an integer yr by

yr

2m
ď xr ă yr ` 1

2m
.

Note that Ir
0

“ ryr{2m, pyr ` 1q{2ms is the leftmost interval that may be painted in round r and
that still contains some uncolored point.

Player B now looks at the next interval Ir
1

“ rpyr ` 1q{2m, pyr ` 2q{2ms. If Ir
1
still contains an

uncolored point, then player B blackens the interval Ir
1
; otherwise he blackens the interval Ir

0
. We

make the convention that, at the beginning of the game, the interval r1, 2s is already blackened;
thus, if yr ` 1 “ 2m, then B blackens Ir

0
.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by
induction that, if before rth round the segment r0, 1s is not completely colored, then, before this
move,

piq the amount of ink used for the segment r0, xrs is at most 3xr; and

piiq for every m, B has blackened at most one interval of length 1{2m to the right of xr.

Obviously, these conditions are satisfied for r “ 0. Now assume that they were satisfied before
the rth move, and consider the situation after this move; let m be the number A has picked at
this move.

If B has blackened the interval Ir
1
at this move, then xr`1 “ xr, and piq holds by the induction

hypothesis. Next, had B blackened before the rth move any interval of length 1{2m to the right
of xr, this interval would necessarily coincide with Ir

1
. By our strategy, this cannot happen. So,

condition piiq also remains valid.
Assume now that B has blackened the interval Ir

0
at the rth move, but the interval r0, 1s still

contains uncolored parts (which means that Ir
1
is contained in r0, 1s). Then condition piiq clearly

remains true, and we need to check piq only. In our case, the intervals Ir
0
and Ir

1
are completely

colored after the rth move, so xr`1 either reaches the right endpoint of I1 or moves even further
to the right. So, xr`1 “ xr ` α for some α ą 1{2m.

Next, any interval blackened by B before the rth move which intersects pxr, xr`1q should be
contained in rxr, xr`1s; by piiq, all such intervals have different lengths not exceeding 1{2m, so
the total amount of ink used for them is less than 2{2m. Thus, the amount of ink used for the
segment r0, xr`1s does not exceed the sum of 2{2m, 3xr (used for r0, xrs), and 1{2m used for the
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segment Ir
0
. In total it gives at most 3pxr ` 1{2mq ă 3pxr ` αq “ 3xr`1. Thus condition piq is also

verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the
pr´1qst move; assume that the segment r0, 1s is not completely black. By piiq, in the segment rxr, 1s
player B has colored several segments of different lengths; all these lengths are negative powers
of 2 not exceeding 1 ´ xr; thus the total amount of ink used for this interval is at most 2p1 ´ xrq.
Using piq, we obtain that the total amount of ink used is at most 3xr ` 2p1 ´ xrq ă 3. Thus the
pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.

Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the
whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of
the type r0, xs. Such a strategy cannot work (even if there is more ink available). Indeed, under the
assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers m ď s in which,
if player B ever paints a point x ě 1 ´ 1{2s then after some move, exactly the interval r0, 1 ´ 1{2ss is
blackened, and the amount of ink used up to this moment is at least s{2.

For the base case s “ 1, player A just picks m “ 1 in the first round. If for some positive integer k
player A has such a strategy, for s` 1 he can first rescale his strategy to the interval r0, 1{2s (sending in
each round half of the amount of ink he would give by the original strategy). Thus, after some round, the
interval r0, 1{2 ´ 1{2s`1s becomes blackened, and the amount of ink used is at least s{4. Now player A
picks m “ 1{2, and player B spends 1{2 unit of ink to blacken the interval r0, 1{2s. After that, player A
again rescales his strategy to the interval r1{2, 1s, and player B spends at least s{4 units of ink to blacken
the interval r1{2, 1 ´ 1{2s`1s, so he spends in total at least s{4 ` 1{2 ` s{4 “ ps ` 1q{2 units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:

Players A and B play a paintful game on the real numbers. Player A has a paint pot with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of
length p. In the beginning of the game, player A chooses (and announces) a positive integer
N . In every round, player A picks some positive integer m ď N and provides 1{2m units
of ink from the pot. The player B picks an integer k and blackens the interval from k{2m
to pk ` 1q{2m (some parts of this interval may happen to be blackened before). The goal of
player A is to reach a situation where the pot is empty and the interval r0, 1s is not completely
blackened.

Decide whether there exists a strategy for player A to win.

However, the Problem Selection Committee believes that this version may turn out to be harder than the
original one.
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of
circles ω1 and ω2, other than W . We show that X , Y , Z and H lie on the same line.

Due to =BNC “ =BMC “ 90˝, the points B, C, N and M are concyclic; denote their circle
by ω3. Observe that the line WZ is the radical axis of ω1 and ω2; similarly, BN is the radical axis
of ω1 and ω3, and CM is the radical axis of ω2 and ω3. Hence A “ BN XCM is the radical center
of the three circles, and therefore WZ passes through A.

SinceWX andWY are diameters in ω1 and ω2, respectively, we have =WZX “ =WZY “ 90˝,
so the points X and Y lie on the line through Z, perpendicular to WZ.
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The quadrilateral BLHN is cyclic, because it has two opposite right angles. From the power
of A with respect to the circles ω1 and BLHN we find AL ¨AH “ AB ¨AN “ AW ¨AZ. If H lies
on the line AW then this implies H “ Z immediately. Otherwise, by AZ

AH
“ AL

AW
the triangles AHZ

and AWL are similar. Then =HZA “ =WLA “ 90˝, so the point H also lies on the line XY Z.

Comment. The original proposal also included a second statement:

Let P be the point on ω1 such that WP is parallel to CN , and let Q be the point on ω2 such
that WQ is parallel to BM . Prove that P , Q and H are collinear if and only if BW “ CW

or AW K BC.

The Problem Selection Committee considered the first part more suitable for the competition.
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G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

Solution 1. Let O be the center of ω, thus O “ MY XNX . Let ℓ be the perpendicular bisector
of AT (it also passes through O). Denote by r the operation of reflection about ℓ. Since AT is the
angle bisector of =BAC, the line rpABq is parallel to AC. Since OM K AB and ON K AC, this
means that the line rpOMq is parallel to the line ON and passes through O, so rpOMq “ ON .
Finally, the circumcircle γ of the triangle AMT is symmetric about ℓ, so rpγq “ γ. Thus the
point M maps to the common point of ON with the arc AMT of γ — that is, rpMq “ X .

Similarly, rpNq “ Y . Thus, we get rpMNq “ XY , and the common point K of MN nd XY
lies on ℓ. This means exactly that KA “ KT .
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Solution 2. Let L be the second common point of the line AC with the circumcircle γ of
the triangle AMT . From the cyclic quadrilaterals ABTC and AMTL we get =BTC “ 180˝ ´
=BAC “ =MTL, which implies =BTM “ =CTL. Since AT is an angle bisector in these
quadrilaterals, we have BT “ TC and MT “ TL. Thus the triangles BTM and CTL are
congruent, so CL “ BM “ AM .

Let X 1 be the common point of the line NX with the external bisector of =BAC; notice
that it lies outside the triangle ABC. Then we have =TAX 1 “ 90˝ and X 1A “ X 1C, so we
get =X 1AM “ 90˝ ` =BAC{2 “ 180˝ ´ =X 1AC “ 180˝ ´ =X 1CA “ =X 1CL. Thus the
triangles X 1AM and X 1CL are congruent, and therefore

=MX 1L “ =AX 1C ` p=CX 1L´ =AX 1Mq “ =AX 1C “ 180˝ ´ 2=X 1AC “ =BAC “ =MAL.

This means that X 1 lies on γ.
Thus we have =TXN “ =TXX 1 “ =TAX 1 “ 90˝, so TX ‖ AC. Then =XTA “ =TAC “

=TAM , so the cyclic quadrilateral MATX is an isosceles trapezoid. Similarly, NATY is an
isosceles trapezoid, so again the lines MN and XY are the reflections of each other about the
perpendicular bisector of AT . Thus K belongs to this perpendicular bisector.
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Comment. There are several different ways of showing that the points X and M are symmetrical with
respect to ℓ. For instance, one can show that the quadrilaterals AMON and TXOY are congruent. We
chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting
properties of the configuration.

Let us define Y 1, analogously to X 1, as the common point of MY and the external bisector of =BAC.
One may easily see that in general the lines MN and X 1Y 1 (which is the external bisector of =BAC)
do not intersect on the perpendicular bisector of AT . Thus, any solution should involve some argument
using the choice of the intersection points X and Y .
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G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

Solution 1. Let K, L, M , and N be the vertices of the rhombus lying on the sides AE, ED, DB,
and BA, respectively. Denote by dpX, Y Zq the distance from a point X to a line Y Z. Since D
and E are the feet of the bisectors, we have dpD,ABq “ dpD,ACq, dpE,ABq “ dpE,BCq, and
dpD,BCq “ dpE,ACq “ 0, which implies

dpD,ACq ` dpD,BCq “ dpD,ABq and dpE,ACq ` dpE,BCq “ dpE,ABq.

Since L lies on the segment DE and the relation dpX,ACq ` dpX,BCq “ dpX,ABq is linear in X
inside the triangle, these two relations imply

dpL,ACq ` dpL,BCq “ dpL,ABq. (1)

Denote the angles as in the figure below, and denote a “ KL. Then we have dpL,ACq “ a sinµ
and dpL,BCq “ a sin ν. Since KLMN is a parallelogram lying on one side of AB, we get

dpL,ABq “ dpL,ABq ` dpN,ABq “ dpK,ABq ` dpM,ABq “ apsin δ ` sin εq.

Thus the condition (1) reads
sin µ ` sin ν “ sin δ ` sin ε. (2)

α βδ ε

ψ

ψ

µ

ν

A B

C

D
E

K

L

M

N

If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume
that α, β ă π{2. It suffices to show then that ψ “ =NKL ď maxtα, βu.

Assume, to the contrary, that ψ ą maxtα, βu. Since µ ` ψ “ =CKN “ α ` δ, by our
assumption we obtain µ “ pα ´ ψq ` δ ă δ. Similarly, ν ă ε. Next, since KN ‖ ML, we have
β “ δ ` ν, so δ ă β ă π{2. Similarly, ε ă π{2. Finally, by µ ă δ ă π{2 and ν ă ε ă π{2, we
obtain

sin µ ă sin δ and sin ν ă sin ε.

This contradicts (2).

Comment. One can see that the equality is achieved if α “ β for every rhombus inscribed into the
quadrilateral AEDB.
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G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

Solution 1. Denote by ω the circumcircle of the triangle ABC, and let =ACB “ γ. Note
that the condition γ ă =CBA implies γ ă 90˝. Since =PBA “ γ, the line PB is tangent
to ω, so PA ¨ PC “ PB2 “ PD2. By PA

PD
“ PD

PC
the triangles PAD and PDC are similar, and

=ADP “ =DCP .
Next, since =ABQ “ =ACB, the triangles ABC and AQB are also similar. Then =AQB “

=ABC “ =ARC, which means that the points D, R, C, and Q are concyclic. Therefore =DRQ “
=DCQ “ =ADP .

A

B

CP Q

R

D

ω

Figure 1

Now from =ARB “ =ACB “ γ and =PDB “ =PBD “ 2γ we get

=QBR “ =ADB ´ =ARB “ =ADP ` =PDB ´ =ARB “ =DRQ ` γ “ =QRB,

so the triangle QRB is isosceles, which yields QB “ QR.

Solution 2. Again, denote by ω the circumcircle of the triangle ABC. Denote =ACB “ γ. Since
=PBA “ γ, the line PB is tangent to ω.

Let E be the second intersection point of BQ with ω. If V 1 is any point on the ray CE

beyond E, then =BEV 1 “ 180˝ ´ =BEC “ 180˝ ´ =BAC “ =PAB; together with =ABQ “
=PBA this shows firstly, that the rays BA and CE intersect at some point V , and secondly
that the triangle V EB is similar to the triangle PAB. Thus we have =BV E “ =BPA. Next,
=AEV “ =BEV ´ γ “ =PAB ´ =ABQ “ =AQB; so the triangles PBQ and V AE are also
similar.

Let PH be an altitude in the isosceles triangle PBD; thenBH “ HD. LetG be the intersection
point of PH and AB. By the symmetry with respect to PH , we have =BDG “ =DBG “ γ “
=BEA; thus DG ‖ AE and hence BG

GA
“ BD

DE
. Thus the points G and D correspond to each other

in the similar triangles PAB and V EB, so =DV B “ =GPB “ 90˝ ´ =PBQ “ 90˝ ´ =V AE.
Thus V D K AE.
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Let T be the common point of V D and AE, and let DS be an altitude in the triangle BDR.
The points S and T are the feet of corresponding altitudes in the similar triangles ADE and BDR,
so BS

SR
“ AT

TE
. On the other hand, the points T and H are feet of corresponding altitudes in the

similar triangles V AE and PBQ, so AT
TE

“ BH
HQ

. Thus BS
SR

“ AT
TE

“ BH
HQ

, and the triangles BHS
and BQR are similar.

Finally, SH is a median in the right-angled triangle SBD; so BH “ HS, and hence BQ “ QR.

A

B

C
P

Q

R

D

G

H

S

T

E

V

ω

Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle ABC and its center, respectively.
From the condition =PBA “ =BCA we know that BP is tangent to ω.

Let E be the second point of intersection of ω and BD. Due to the isosceles triangle BDP ,
the tangent of ω at E is parallel to DP and consequently it intersects BP at some point L. Of
course, PD ‖ LE. Let M be the midpoint of BE, and let H be the midpoint of BR. Notice that
=AEB “ =ACB “ =ABQ “ =ABE, so A lies on the perpendicular bisector of BE; thus the
points L, A, M , and O are collinear. Let ω1 be the circle with diameter BO. Let Q1 “ HOXBE;
since HO is the perpendicular bisector of BR, the statement of the problem is equivalent to
Q1 “ Q.

Consider the following sequence of projections (see Fig. 3).

1. Project the line BE to the line LB through the center A. (This maps Q to P .)
2. Project the line LB to BE in parallel direction with LE. (P ÞÑ D.)
3. Project the line BE to the circle ω through its point A. (D ÞÑ R.)
4. Scale ω by the ratio 1

2
from the point B to the circle ω1. (R ÞÑ H .)

5. Project ω1 to the line BE through its point O. (H ÞÑ Q1.)

We prove that the composition of these transforms, which maps the line BE to itself, is the
identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which
is fixed by all the transformations above. Another fixed point is M , its path being M ÞÑ L ÞÑ
E ÞÑ E ÞÑ M ÞÑ M .
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Figure 3 Figure 4
In order to show a third fixed point, draw a line parallel with LE through A; let that line

intersect BE, LB and ω at X , Y and Z ‰ A, respectively (see Fig. 4). We show that X is a
fixed point. The images of X at the first three transformations are X ÞÑ Y ÞÑ X ÞÑ Z. From
=XBZ “ =EAZ “ =AEL “ =LBA “ =BZX we can see that the triangle XBZ is isosceles.
Let U be the midpoint of BZ; then the last two transformations do Z ÞÑ U ÞÑ X , and the point X
is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less
straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F , G and I. After comparing the angles
depicted in Fig. 5 (noticing that the quadrilateral AFBG is cyclic) we can observe that the tangent LE
of ω is parallel to BI. Then, similarly to the above reasons, the point E is also fixed.

A

ω

B

I

E

Q

P

F

L

G

Figure 5
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G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

In all three solutions, we denote θ “ =A´ =D “ =C ´ =F “ =E ´ =B and assume without loss
of generality that θ ě 0.

Solution 1. Let x “ AB “ DE, y “ CD “ FA, z “ EF “ BC. Consider the points P, Q,
and R such that the quadrilaterals CDEP , EFAQ, and ABCR are parallelograms. We compute

=PEQ “ =FEQ ` =DEP ´ =E “ p180˝ ´ =F q ` p180˝ ´ =Dq ´ =E

“ 360˝ ´ =D ´ =E ´ =F “ 1

2

`

=A` =B ` =C ´ =D ´ =E ´ =F
˘

“ θ{2.

Similarly, =QAR “ =RCP “ θ{2.

D
E

F

A

B

CP

Q

R

x

z

y

x
z

y

If θ “ 0, since △RCP is isosceles, R “ P . Therefore AB ‖ RC “ PC ‖ ED, so ABDE is a
parallelogram. Similarly, BCEF and CDFA are parallelograms. It follows that AD, BE and CF
meet at their common midpoint.

Now assume θ ą 0. Since △PEQ, △QAR, and △RCP are isosceles and have the same angle
at the apex, we have △PEQ „ △QAR „ △RCP with ratios of similarity y : z : x. Thus

△PQR is similar to the triangle with sidelengths y, z, and x. (1)

Next, notice that
RQ

QP
“ z

y
“ RA

AF

and, using directed angles between rays,

>pRQ,QP q “ >pRQ,QEq ` >pQE,QP q
“ >pRQ,QEq ` >pRA,RQq “ >pRA,QEq “ >pRA,AF q.

Thus △PQR „ △FAR. Since FA “ y and AR “ z, (1) then implies that FR “ x. Similarly
FP “ x. Therefore CRFP is a rhombus.

We conclude that CF is the perpendicular bisector of PR. Similarly, BE is the perpendicular
bisector of PQ and AD is the perpendicular bisector of QR. It follows that AD, BE, and CF are
concurrent at the circumcenter of PQR.
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Solution 2. Let X “ CD X EF , Y “ EF X AB, Z “ AB X CD, X 1 “ FA X BC, Y 1 “
BC X DE, and Z 1 “ DE X FA. From =A ` =B ` =C “ 360˝ ` θ{2 we get =A ` =B ą 180˝

and =B ` =C ą 180˝, so Z and X 1 are respectively on the opposite sides of BC and AB from the
hexagon. Similar conclusions hold for X , Y , Y 1, and Z 1. Then

=Y ZX “ =B ` =C ´ 180˝ “ =E ` =F ´ 180˝ “ =Y 1Z 1X 1,

and similarly =ZXY “ =Z 1X 1Y 1 and =XY Z “ =X 1Y 1Z 1, so △XY Z „ △X 1Y 1Z 1. Thus there is
a rotation R which sends △XY Z to a triangle with sides parallel to △X 1Y 1Z 1. Since AB “ DE

we have R
`ÝÝÑ
AB

˘

“ ÝÝÑ
DE. Similarly, R

`ÝÝÑ
CD

˘

“ ÝÝÑ
FA and R

`ÝÝÑ
EF

˘

“ ÝÝÑ
BC. Therefore

ÝÑ
0 “ ÝÝÑ

AB ` ÝÝÑ
BC ` ÝÝÑ

CD ` ÝÝÑ
DE ` ÝÝÑ

EF ` ÝÝÑ
FA “

`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

` R
`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

.

If R is a rotation by 180˝, then any two opposite sides of our hexagon are equal and parallel,
so the three diagonals meet at their common midpoint. Otherwise, we must have

ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF “ ÝÑ

0 ,

or else we would have two vectors with different directions whose sum is
ÝÑ
0 .

T

D

E
F

A

B

C

Z

X
Y

Z ′

X ′

Y ′

O3

O1

O2

N

LM
O

This allows us to consider a triangle LMN with
ÝÝÑ
LM “ ÝÝÑ

EF ,
ÝÝÑ
MN “ ÝÝÑ

AB, and
ÝÝÑ
NL “ ÝÝÑ

CD. Let O
be the circumcenter of △LMN and consider the points O1, O2, O3 such that △AO1B, △CO2D,
and △EO3F are translations of △MON , △NOL, and △LOM , respectively. Since FO3 and AO1

are translations of MO, quadrilateral AFO3O1 is a parallelogram and O3O1 “ FA “ CD “ NL.
Similarly, O1O2 “ LM and O2O3 “ MN . Therefore △O1O2O3 – △LMN . Moreover, by means
of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of △O1O2O3. We claim that AD, BE, and CF meet at T . Let
us show that C, T , and F are collinear. Notice that CO2 “ O2T “ TO3 “ O3F since they are
all equal to the circumradius of △LMN . Therefore △TO3F and △CO2T are isosceles. Using
directed angles between rays again, we get

>pTF, TO3q “ >pFO3, FT q and >pTO2, TCq “ >pCT,CO2q. (2)

Also, T and O are the circumcenters of the congruent triangles △O1O2O3 and △LMN so we have
>pTO3, TO2q “ >pON,OMq. Since CO2 and FO3 are translations of NO and MO respectively,
this implies

>pTO3, TO2q “ >pCO2, FO3q. (3)
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Adding the three equations in (2) and (3) gives

>pTF, TCq “ >pCT, FT q “ ´>pTF, TCq
which implies that T is on CF . Analogous arguments show that it is on AD and BE also. The
desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled
clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider
the complex numbers a, b, c, a1, b1, c1 given by B ´ A “ a, D ´ C “ b, F ´ E “ c, E ´ D “ a1,
A ´ F “ b1, and C ´ B “ c1. Let k “ |a|{|b|. From a{b1 “ ´kei=A and a1{b “ ´kei=D we get that
pa1{aqpb1{bq “ e´iθ and similarly pb1{bqpc1{cq “ e´iθ and pc1{cqpa1{aq “ e´iθ. It follows that a1 “ ar,
b1 “ br, and c1 “ cr for a complex number r with |r| “ 1, as shown below.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EF

A

B

C

a+ b+ cr = c(r − 1)

−br − c
−br

0

a

a+ cr

c(r − 1)λ

a cr

b

ar
c

br

We have
0 “ a` cr ` b` ar ` c ` br “ pa` b ` cqp1 ` rq.

If r “ ´1, then the hexagon is centrally symmetric and its diagonals intersect at its center of
symmetry. Otherwise

a` b ` c “ 0.

Therefore

A “ 0, B “ a, C “ a` cr, D “ cpr ´ 1q, E “ ´br ´ c, F “ ´br.
Now consider a point W on AD given by the complex number cpr´ 1qλ, where λ is a real number
with 0 ă λ ă 1. Since D ‰ A, we have r ‰ 1, so we can define s “ 1{pr ´ 1q. From rr “ |r|2 “ 1
we get

1 ` s “ r

r ´ 1
“ r

r ´ rr
“ 1

1 ´ r
“ ´s.

Now,

W is on BE ðñ cpr ´ 1qλ´ a ‖ a´ p´br ´ cq “ bpr ´ 1q ðñ cλ ´ as ‖ b

ðñ ´aλ ´ bλ ´ as ‖ b ðñ apλ ` sq ‖ b.
One easily checks that r ‰ ˘1 implies that λ ` s ‰ 0 since s is not real. On the other hand,

W on CF ðñ cpr ´ 1qλ ` br ‖ ´br ´ pa` crq “ apr ´ 1q ðñ cλ ` bp1 ` sq ‖ a
ðñ ´aλ ´ bλ ´ bs ‖ a ðñ bpλ ` sq ‖ a ðñ b ‖ apλ ` sq,

where in the last step we use that pλ` sqpλ` sq “ |λ` s|2 P Rą0. We conclude that AD XBE “
CF X BE, and the desired result follows.
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G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)

Solution 1. Denote the circumcircles of the triangles ABC and A1B1C1 by Ω and Γ, respectively.
Denote the midpoint of the arc CB of Ω containing A by A0, and define B0 as well as C0 analogously.
By our hypothesis the centre Q of Γ lies on Ω.

Lemma. One has A0B1 “ A0C1. Moreover, the points A, A0, B1, and C1 are concyclic. Finally,
the points A and A0 lie on the same side of B1C1. Similar statements hold for B and C.

Proof. Let us consider the case A “ A0 first. Then the triangle ABC is isosceles at A, which
implies AB1 “ AC1 while the remaining assertions of the Lemma are obvious. So let us suppose
A ‰ A0 from now on.

By the definition of A0, we have A0B “ A0C. It is also well known and easy to show that BC1 “
CB1. Next, we have =C1BA0 “ =ABA0 “ =ACA0 “ =B1CA0. Hence the triangles A0BC1

and A0CB1 are congruent. This implies A0C1 “ A0B1, establishing the first part of the Lemma.
It also follows that =A0C1A “ =A0B1A, as these are exterior angles at the corresponding vertices
C1 and B1 of the congruent triangles A0BC1 and A0CB1. For that reason the points A, A0, B1,
and C1 are indeed the vertices of some cyclic quadrilateral two opposite sides of which are AA0

and B1C1. l

Now we turn to the solution. Evidently the points A1, B1, and C1 lie interior to some semicircle
arc of Γ, so the triangle A1B1C1 is obtuse-angled. Without loss of generality, we will assume that
its angle at B1 is obtuse. Thus Q and B1 lie on different sides of A1C1; obviously, the same holds
for the points B and B1. So, the points Q and B are on the same side of A1C1.

Notice that the perpendicular bisector of A1C1 intersects Ω at two points lying on different
sides of A1C1. By the first statement from the Lemma, both points B0 and Q are among these
points of intersection; since they share the same side of A1C1, they coincide (see Figure 1).

A

B

C
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Figure 1
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Now, by the first part of the Lemma again, the lines QA0 and QC0 are the perpendicular
bisectors of B1C1 and A1B1, respectively. Thus

=C1B0A1 “ =C1B0B1 ` =B1B0A1 “ 2=A0B0B1 ` 2=B1B0C0 “ 2=A0B0C0 “ 180˝ ´ =ABC,

recalling that A0 and C0 are the midpoints of the arcs CB and BA, respectively.
On the other hand, by the second part of the Lemma we have

=C1B0A1 “ =C1BA1 “ =ABC.

From the last two equalities, we get =ABC “ 90˝, whereby the problem is solved.

Solution 2. Let Q again denote the centre of the circumcircle of the triangle A1B1C1, that lies
on the circumcircle Ω of the triangle ABC. We first consider the case where Q coincides with one
of the vertices of ABC, say Q “ B. Then BC1 “ BA1 and consequently the triangle ABC is
isosceles at B. Moreover we have BC1 “ B1C in any triangle, and hence BB1 “ BC1 “ B1C;
similarly, BB1 “ B1A. It follows that B1 is the centre of Ω and that the triangle ABC has a right
angle at B.

So from now on we may suppose Q R tA,B,Cu. We start with the following well known fact.

Lemma. Let XY Z and X 1Y 1Z 1 be two triangles with XY “ X 1Y 1 and Y Z “ Y 1Z 1.

piq If XZ ‰ X 1Z 1 and =Y ZX “ =Y 1Z 1X 1, then =ZXY ` =Z 1X 1Y 1 “ 180˝.

piiq If =Y ZX ` =X 1Z 1Y 1 “ 180˝, then =ZXY “ =Y 1X 1Z 1.

Proof. For both parts, we may move the triangle XY Z through the plane until Y “ Y 1 and Z “ Z 1.
Possibly after reflecting one of the two triangles about Y Z, we may also suppose that X and X 1

lie on the same side of Y Z if we are in case piq and on different sides if we are in case piiq. In both
cases, the points X , Z, and X 1 are collinear due to the angle condition (see Fig. 2). Moreover we
have X ‰ X 1, because in case piq we assumed XZ ‰ X 1Z 1 and in case piiq these points even lie
on different sides of Y Z. Thus the triangle XX 1Y is isosceles at Y . The claim now follows by
considering the equal angles at its base. l

X X ′

Y = Y ′

Z = Z ′
X X ′

Y = Y ′

Z = Z ′

Figure 2(i) Figure 2(ii)

Relabeling the vertices of the triangle ABC if necessary we may suppose that Q lies in the
interior of the arc AB of Ω not containing C. We will sometimes use tacitly that the six trian-
gles QBA1, QA1C, QCB1, QB1A, QC1A, and QBC1 have the same orientation.

As Q cannot be the circumcentre of the triangle ABC, it is impossible that QA “ QB “ QC

and thus we may also suppose that QC ‰ QB. Now the above Lemma piq is applicable to the
triangles QB1C and QC1B, since QB1 “ QC1 and B1C “ C1B, while =B1CQ “ =C1BQ holds
as both angles appear over the same side of the chord QA in Ω (see Fig. 3). So we get

=CQB1 ` =BQC1 “ 180˝. (1)
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We claim that QC “ QA. To see this, let us assume for the sake of a contradiction that
QC ‰ QA. Then arguing similarly as before but now with the triangles QA1C and QC1A we get

=A1QC ` =C1QA “ 180˝.

Adding this equation to (1), we get =A1QB1 ` =BQA “ 360˝, which is absurd as both summands
lie in the interval p0˝, 180˝q.

This proves QC “ QA; so the triangles QA1C and QC1A are congruent their sides being equal,
which in turn yields

=A1QC “ =C1QA. (2)

Finally our Lemma piiq is applicable to the trianglesQA1B andQB1A. Indeed we have QA1 “ QB1

and A1B “ B1A as usual, and the angle condition =A1BQ ` =QAB1 “ 180˝ holds as A and B
lie on different sides of the chord QC in Ω. Consequently we have

=BQA1 “ =B1QA. (3)

From (1) and (3) we get

p=B1QC ` =B1QAq ` p=C1QB ´ =BQA1q “ 180˝,

i.e. =CQA ` =A1QC1 “ 180˝. In light of (2) this may be rewritten as 2=CQA “ 180˝ and as Q
lies on Ω this implies that the triangle ABC has a right angle at B.
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Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle ABC is
acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle ABC
is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that
the above simplified version is more suitable for the competition.
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

Answer. fpnq “ n.

Solution 1. Setting m “ n “ 2 tells us that 4`fp2q | 2fp2q`2. Since 2fp2q`2 ă 2p4`fp2qq, we
must have 2fp2q ` 2 “ 4` fp2q, so fp2q “ 2. Plugging in m “ 2 then tells us that 4` fpnq | 4`n,
which implies that fpnq ď n for all n.

Setting m “ n gives n2 ` fpnq | nfpnq ` n, so nfpnq ` n ě n2 ` fpnq which we rewrite as
pn ´ 1qpfpnq ´ nq ě 0. Therefore fpnq ě n for all n ě 2. This is trivially true for n “ 1 also.

It follows that fpnq “ n for all n. This function obviously satisfies the desired property.

Solution 2. Setting m “ fpnq we get fpnqpfpnq`1q | fpnqfpfpnqq`n. This implies that fpnq | n
for all n.

Now let m be any positive integer, and let p ą 2m2 be a prime number. Note that p ą mfpmq
also. Plugging in n “ p´mfpmq we learn thatm2`fpnq divides p. Since m2`fpnq cannot equal 1,
it must equal p. Therefore p ´ m2 “ fpnq | n “ p ´ mfpmq. But p ´ mfpmq ă p ă 2pp ´ m2q, so
we must have p ´ mfpmq “ p ´ m2, i.e., fpmq “ m.

Solution 3. Plugging m “ 1 we obtain 1` fpnq ď fp1q `n, so fpnq ď n` c for the constant c “
fp1q´1. Assume that fpnq ‰ n for some fixed n. When m is large enough (e.g. m ě maxpn, c`1q)
we have

mfpmq ` n ď mpm ` cq ` n ď 2m2 ă 2pm2 ` fpnqq,
so we must have mfpmq ` n “ m2 ` fpnq. This implies that

0 ‰ fpnq ´ n “ mpfpmq ´ mq,

which is impossible for m ą |fpnq ´ n|. It follows that f is the identity function.
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N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

Solution 1. We proceed by induction on k. For k “ 1 the statement is trivial. Assuming we
have proved it for k “ j ´ 1, we now prove it for k “ j.

Case 1. n “ 2t ´ 1 for some positive integer t.

Observe that

1 ` 2j ´ 1

2t´ 1
“ 2pt` 2j´1 ´ 1q

2t
¨ 2t

2t´ 1
“
ˆ

1 ` 2j´1 ´ 1

t

˙ˆ

1 ` 1

2t´ 1

˙

.

By the induction hypothesis we can find m1, . . . , mj´1 such that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

,

so setting mj “ 2t´ 1 gives the desired expression.

Case 2. n “ 2t for some positive integer t.

Now we have

1 ` 2j ´ 1

2t
“ 2t` 2j ´ 1

2t` 2j ´ 2
¨ 2t` 2j ´ 2

2t
“
ˆ

1 ` 1

2t` 2j ´ 2

˙ˆ

1 ` 2j´1 ´ 1

t

˙

,

noting that 2t` 2j ´ 2 ą 0. Again, we use that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

.

Setting mj “ 2t ` 2j ´ 2 then gives the desired expression.

Solution 2. Consider the base 2 expansions of the residues of n´ 1 and ´n modulo 2k:

n´ 1 ” 2a1 ` 2a2 ` ¨ ¨ ¨ ` 2ar pmod 2kq where 0 ď a1 ă a2 ă . . . ă ar ď k ´ 1,

´n ” 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bs pmod 2kq where 0 ď b1 ă b2 ă . . . ă bs ď k ´ 1.

Since ´1 ” 20 ` 21 ` ¨ ¨ ¨ ` 2k´1 pmod 2kq, we have ta1, . . . , aru Y tb1 . . . , bsu “ t0, 1, . . . , k´ 1u and
r ` s “ k. Write

Sp “ 2ap ` 2ap`1 ` ¨ ¨ ¨ ` 2ar for 1 ď p ď r,

Tq “ 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bq for 1 ď q ď s.
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Also set Sr`1 “ T0 “ 0. Notice that S1 ` Ts “ 2k ´ 1 and n` Ts ” 0 pmod 2kq. We have

1 ` 2k ´ 1

n
“ n ` S1 ` Ts

n
“ n ` S1 ` Ts

n` Ts
¨ n ` Ts

n

“
r
ź

p“1

n ` Sp ` Ts

n ` Sp`1 ` Ts
¨

s
ź

q“1

n` Tq

n` Tq´1

“
r
ź

p“1

ˆ

1 ` 2ap

n ` Sp`1 ` Ts

˙

¨
s
ź

q“1

ˆ

1 ` 2bq

n ` Tq´1

˙

,

so if we define

mp “ n` Sp`1 ` Ts

2ap
for 1 ď p ď r and mr`q “ n ` Tq´1

2bq
for 1 ď q ď s,

the desired equality holds. It remains to check that every mi is an integer. For 1 ď p ď r we have

n` Sp`1 ` Ts ” n ` Ts ” 0 pmod 2apq

and for 1 ď q ď r we have
n ` Tq´1 ” n ` Ts ” 0 pmod 2bqq.

The desired result follows.
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N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

Solution. Let pn be the largest prime divisor of n4 `n2 ` 1 and let qn be the largest prime divisor
of n2 ` n ` 1. Then pn “ qn2 , and from

n4 ` n2 ` 1 “ pn2 ` 1q2 ´ n2 “ pn2 ´ n` 1qpn2 ` n` 1q “ ppn´ 1q2 ` pn´ 1q ` 1qpn2 ` n` 1q

it follows that pn “ maxtqn, qn´1u for n ě 2. Keeping in mind that n2 ´ n` 1 is odd, we have

gcdpn2 ` n` 1, n2 ´ n` 1q “ gcdp2n, n2 ´ n` 1q “ gcdpn, n2 ´ n` 1q “ 1.

Therefore qn ‰ qn´1.

To prove the result, it suffices to show that the set

S “ tn P Zě2 | qn ą qn´1 and qn ą qn`1u

is infinite, since for each n P S one has

pn “ maxtqn, qn´1u “ qn “ maxtqn, qn`1u “ pn`1.

Suppose on the contrary that S is finite. Since q2 “ 7 ă 13 “ q3 and q3 “ 13 ą 7 “ q4, the set S
is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that qm ą qm`1 ą qm`2 ą . . . because all these numbers are positive
integers, so there exists a k ě m such that qk ă qk`1 (recall that qk ‰ qk`1). Next observe that it
is impossible to have qk ă qk`1 ă qk`2 ă . . . , because qpk`1q2 “ pk`1 “ maxtqk, qk`1u “ qk`1, so
let us take the smallest ℓ ě k ` 1 such that qℓ ą qℓ`1. By the minimality of ℓ we have qℓ´1 ă qℓ,
so ℓ P S. Since ℓ ě k ` 1 ą k ě m, this contradicts the maximality of m, and hence S is indeed
infinite.

Comment. Once the factorization of n4 ` n2 ` 1 is found and the set S is introduced, the problem is
mainly about ruling out the case that

qk ă qk`1 ă qk`2 ă . . . (1)

might hold for some k P Zą0. In the above solution, this is done by observing qpk`1q2 “ maxpqk, qk`1q.
Alternatively one may notice that (1) implies that qj`2 ´ qj ě 6 for j ě k ` 1, since every prime greater
than 3 is congruent to ´1 or 1 modulo 6. Then there is some integer C ě 0 such that qn ě 3n ´ C for
all n ě k.

Now let the integer t be sufficiently large (e.g. t “ maxtk ` 1, C ` 3u) and set p “ qt´1 ě 2t. Then
p | pt ´ 1q2 ` pt ´ 1q ` 1 implies that p | pp ´ tq2 ` pp ´ tq ` 1, so p and qp´t are prime divisors of
pp´ tq2 ` pp´ tq ` 1. But p´ t ą t´ 1 ě k, so qp´t ą qt´1 “ p and p ¨ qp´t ą p2 ą pp´ tq2 ` pp´ tq ` 1,
a contradiction.
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N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

Answer. No.

Solution. Assume that a1, a2, a3, . . . is such a sequence. For each positive integer k, let yk “
akak´1 . . . a1. By the assumption, for each k ą N there exists a positive integer xk such that
yk “ x2k.

I. For every n, let 5γn be the greatest power of 5 dividing xn. Let us show first that 2γn ě n for
every positive integer n ą N .

Assume, to the contrary, that there exists a positive integer n ą N such that 2γn ă n, which
yields

yn`1 “ an`1an . . . a1 “ 10nan`1 ` anan´1 . . . a1 “ 10nan`1 ` yn “ 52γn
´

2n5n´2γnan`1 ` yn

52γn

¯

.

Since 5 {| yn{52γn , we obtain γn`1 “ γn ă n ă n ` 1. By the same arguments we obtain that
γn “ γn`1 “ γn`2 “ . . . . Denote this common value by γ.

Now, for each k ě n we have

pxk`1 ´ xkqpxk`1 ` xkq “ x2k`1
´ x2k “ yk`1 ´ yk “ ak`1 ¨ 10k.

One of the numbers xk`1 ´xk and xk`1 `xk is not divisible by 5γ`1 since otherwise one would have
5γ`1 |

`

pxk`1 ´xkq ` pxk`1 `xkq
˘

“ 2xk`1. On the other hand, we have 5k | pxk`1 ´xkqpxk`1 `xkq,
so 5k´γ divides one of these two factors. Thus we get

5k´γ ď maxtxk`1 ´ xk, xk`1 ` xku ă 2xk`1 “ 2
?
yk`1 ă 2 ¨ 10pk`1q{2,

which implies 52k ă 4 ¨ 52γ ¨ 10k`1, or p5{2qk ă 40 ¨ 52γ. The last inequality is clearly false for
sufficiently large values of k. This contradiction shows that 2γn ě n for all n ą N .

II. Consider now any integer k ą maxtN{2, 2u. Since 2γ2k`1 ě 2k ` 1 and 2γ2k`2 ě 2k ` 2,
we have γ2k`1 ě k ` 1 and γ2k`2 ě k ` 1. So, from y2k`2 “ a2k`2 ¨ 102k`1 ` y2k`1 we obtain
52k`2 | y2k`2 ´ y2k`1 “ a2k`2 ¨ 102k`1 and thus 5 | a2k`2, which implies a2k`2 “ 5. Therefore,

px2k`2 ´ x2k`1qpx2k`2 ` x2k`1q “ x2
2k`2

´ x2
2k`1

“ y2k`2 ´ y2k`1 “ 5 ¨ 102k`1 “ 22k`1 ¨ 52k`2.

Setting Ak “ x2k`2{5k`1 and Bk “ x2k`1{5k`1, which are integers, we obtain

pAk ´ BkqpAk ` Bkq “ 22k`1. (1)

Both Ak and Bk are odd, since otherwise y2k`2 or y2k`1 would be a multiple of 10 which is false
by a1 ‰ 0; so one of the numbers Ak ´ Bk and Ak ` Bk is not divisible by 4. Therefore (1) yields
Ak ´ Bk “ 2 and Ak ` Bk “ 22k, hence Ak “ 22k´1 ` 1 and thus

x2k`2 “ 5k`1Ak “ 10k`1 ¨ 2k´2 ` 5k`1 ą 10k`1,

since k ě 2. This implies that y2k`2 ą 102k`2 which contradicts the fact that y2k`2 contains 2k` 2
digits. The desired result follows.
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Solution 2. Again, we assume that a sequence a1, a2, a3, . . . satisfies the problem conditions,
introduce the numbers xk and yk as in the previous solution, and notice that

yk`1 ´ yk “ pxk`1 ´ xkqpxk`1 ` xkq “ 10kak`1 (2)

for all k ą N . Consider any such k. Since a1 ‰ 0, the numbers xk and xk`1 are not multiples of 10,
and therefore the numbers pk “ xk`1 ´ xk and qk “ xk`1 ` xk cannot be simultaneously multiples
of 20, and hence one of them is not divisible either by 4 or by 5. In view of (2), this means that
the other one is divisible by either 5k or by 2k´1. Notice also that pk and qk have the same parity,
so both are even.

On the other hand, we have x2k`1
“ x2k ` 10kak`1 ě x2k ` 10k ą 2x2k, so xk`1{xk ą

?
2, which

implies that

1 ă qk

pk
“ 1 ` 2

xk`1{xk ´ 1
ă 1 ` 2?

2 ´ 1
ă 6. (3)

Thus, if one of the numbers pk and qk is divisible by 5k, then we have

10k`1 ą 10kak`1 “ pkqk ě p5kq2
6

and hence p5{2qk ă 60 which is false for sufficiently large k. So, assuming that k is large, we get
that 2k´1 divides one of the numbers pk and qk. Hence

tpk, qku “ t2k´1 ¨ 5rkbk, 2 ¨ 5k´rkcku with nonnegative integers bk, ck, rk such that bkck “ ak`1.

Moreover, from (3) we get

6 ą 2k´1 ¨ 5rkbk
2 ¨ 5k´rkck

ě 1

36
¨
ˆ

2

5

˙k

¨ 52rk and 6 ą 2 ¨ 5k´rkck

2k´1 ¨ 5rkbk
ě 4

9
¨
ˆ

5

2

˙k

¨ 5´2rk ,

so
αk ` c1 ă rk ă αk ` c2 for α “ 1

2
log

5

`

5

2

˘

ă 1 and some constants c2 ą c1. (4)

Consequently, for C “ c2 ´ c1 ` 1 ´ α ą 0 we have

pk ` 1q ´ rk`1 ď k ´ rk ` C. (5)

Next, we will use the following easy lemma.

Lemma. Let s be a positive integer. Then 5s`2
s ” 5s pmod 10sq.

Proof. Euler’s theorem gives 52
s ” 1 pmod 2sq, so 5s`2

s ´ 5s “ 5sp52s ´ 1q is divisible by 2s and 5s.

Now, for every large k we have

xk`1 “ pk ` qk

2
“ 5rk ¨ 2k´2bk ` 5k´rkck ” 5k´rkck pmod 10rkq (6)

since rk ď k ´ 2 by (4); hence yk`1 ” 52pk´rkqc2k pmod 10rkq. Let us consider some large integer s,
and choose the minimal k such that 2pk´ rkq ě s`2s; it exists by (4). Set d “ 2pk´ rkq ´ ps`2sq.
By (4) we have 2s ă 2pk ´ rkq ă

`

2

α
´ 2

˘

rk ´ 2c1
α
; if s is large this implies rk ą s, so (6) also holds

modulo 10s. Then (6) and the lemma give

yk`1 ” 52pk´rkqc2k “ 5s`2
s ¨ 5dc2k ” 5s ¨ 5dc2k pmod 10sq. (7)

By (5) and the minimality of k we have d ď 2C, so 5dc2k ď 52C ¨ 81 “ D. Using 54 ă 103 we obtain

5s ¨ 5dc2k ă 103s{4D ă 10s´1

for sufficiently large s. This, together with (7), shows that the sth digit from the right in yk`1,
which is as, is zero. This contradicts the problem condition.
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N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after
every move; so the game necessarily ends after at most n steps, and consequently there always has
to be some player possessing a winning strategy. So if some n ě k is bad, then Ana has a winning
strategy in the game with starting number n.

More precisely, if n ě k is such that there is a good integer m with n ą m ě k and
gcdpm,nq “ 1, then n itself is bad, for Ana has the following winning strategy in the game with
initial number n: She proceeds by first playing m and then using Banana’s strategy for the game
with starting number m.

Otherwise, if some integer n ě k has the property that every integer m with n ą m ě k and
gcdpm,nq “ 1 is bad, then n is good. Indeed, if Ana can make a first move at all in the game with
initial number n, then she leaves it in a position where the first player has a winning strategy, so
that Banana can defeat her.

In particular, this implies that any two good numbers have a non–trivial common divisor. Also,
k itself is good.

For brevity, we say that n ÝÑ x is a move if n and x are two coprime integers with n ą x ě k.

Claim 1. If n is good and n1 is a multiple of n, then n1 is also good.

Proof. If n1 were bad, there would have to be some move n1 ÝÑ x, where x is good. As n1 is a
multiple of n this implies that the two good numbers n and x are coprime, which is absurd. l

Claim 2. If r and s denote two positive integers for which rs ě k is bad, then r2s is also bad.

Proof. Since rs is bad, there is a move rs ÝÑ x for some good x. Evidently x is coprime to r2s as
well, and hence the move r2s ÝÑ x shows that r2s is indeed bad. l

Claim 3. If p ą k is prime and n ě k is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, np
is good. Since n is bad, there is a move n ÝÑ x for some good x. Now np ÝÑ x cannot be a
valid move, which tells us that x has to be divisible by p. So we can write x “ pry, where r and y
denote some positive integers, the latter of which is not divisible by p.

Note that y “ 1 is impossible, for then we would have x “ pr and the move x ÝÑ k would
establish that x is bad. In view of this, there is a least power yα of y that is at least as large
as k. Since the numbers np and yα are coprime and the former is good, the latter has to be
bad. Moreover, the minimality of α implies yα ă ky ă py “ x

pr´1 ă n
pr´1 . So pr´1 ¨ yα ă n and

consequently all the numbers yα, pyα, . . . , pr ¨ yα “ pppr´1 ¨ yαq are bad due to the minimal choice
of n. But now by Claim 1 the divisor x of pr ¨ yα cannot be good, whereby we have reached a
contradiction that proves Claim 3. l
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We now deduce the statement of the problem from these three claims. To this end, we call two
integers a, b ě k similar if they are divisible by the same prime numbers not exceeding k. We are
to prove that if a and b are similar, then either both of them are good or both are bad. As in this
case the product ab is similar to both a and b, it suffices to show the following: if c ě k is similar
to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample pc0, d0q with d0 being
as small as possible. By Claim 1, c0 is bad whilst d0 is good. Plainly d0 is strictly greater than c0
and hence the quotient d0

c0
has some prime factor p. Clearly p divides d0. If p ď k, then p

divides c0 as well due to the similarity, and hence d0 is actually divisible by p2. So d0
p
is good by

the contrapositive of Claim 2. Since c0 | d0
p
, the pair pc0, d0p q contradicts the supposed minimality

of d0. This proves p ą k, but now we get the same contradiction using Claim 3 instead of Claim 2.
Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of
the first solution. Let us call a prime number p small in case p ď k and big otherwise. We again
call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer b ě k having some small prime factor, there exists an integer x
similar to it with b ě x ě k and having no big prime factors.

Proof. Unless b has a big prime factor we may simply choose x “ b. Now let p and q denote a
small and a big prime factor of b, respectively. Let a be the product of all small prime factors
of b. Further define n to be the least non–negative integer for which the number x “ pna is at
least as large as k. It suffices to show that b ą x. This is clear in case n “ 0, so let us assume
n ą 0 from now on. Then we have x ă pk due to the minimality of n, p ď a because p divides a
by construction, and k ă q. Therefore x ă aq and, as the right hand side is a product of distinct
prime factors of b, this implies indeed x ă b. l

Let us now assume that there is a pair pa, bq of similar numbers such that a is bad and b is
good. Take such a pair with maxpa, bq being as small as possible. Since a is bad, there exists a
move a ÝÑ r for some good r. Since the numbers k and r are both good, they have a common
prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields
an integer r1 similar to r containing small prime factors only and satisfying r ě r1 ě k. Since
maxpr, r1q “ r ă a ď maxpa, bq the number r1 is also good. Now let p denote a common prime
factor of the good numbers r1 and b. By our construction of r1, this prime is small and due to
the similarities it consequently divides a and r, contrary to a ÝÑ r being a move. Thereby the
problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For
instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.

Proof. Otherwise there exists a pair pb, b1q of good numbers with b1 ě b ě k all of whose common prime
factors are big. Choose such a pair with b1 being as small as possible. Since b and k are both good, there
has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b1, which in
turn tells us b1 ą b. Applying Claim 4 to b we get an integer x with b ě x ě k that is similar to b and has
no big prime divisors at all. By our assumption, b1 and x are coprime, and as b1 is good this implies that
x is bad. Consequently there has to be some move x ÝÑ b˚ such that b˚ is good. But now all the small
prime factors of b also appear in x and thus they cannot divide b˚. Therefore the pair pb˚, bq contradicts
the supposed minimality of b1. l
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From that point, it is easy to complete the solution: assume that there are two similar integers a and b
such that a is bad and b is good. Since a is bad, there is a move a ÝÑ b1 for some good b1. By Claim 5,
there is a small prime p dividing b and b1. Due to the similarity of a and b, the prime p has to divide a
as well, but this contradicts the fact that a ÝÑ b1 is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence
b0, b1, . . . , of all good numbers may be constructed recursively as follows:

‚ Start with b0 “ k.

‚ If bn has just been defined for some n ě 0, then bn`1 is the smallest number b ą bn that is coprime
to none of b0, . . . , bn.

This construction can be used to determine the set of good numbers for any specific k as explained in the
next comment. It is already clear that if k “ pα is a prime power, then a number b ě k is good if and
only if it is divisible by p.

Comment 3. Let P ą 1 denote the product of all small prime numbers. Then any two integers a, b ě k

that are congruent modulo P are similar. Thus the infinite word Wk “ pXk,Xk`1, . . .q defined by

Xi “
#

A if i is bad

B if i is good

for all i ě k is periodic and the length of its period divides P . As the prime power example shows, the
true period can sometimes be much smaller than P . On the other hand, there are cases where the period
is rather large; e.g., if k “ 15, the sequence of good numbers begins with 15, 18, 20, 24, 30, 36, 40, 42, 45
and the period of W15 is 30.

Comment 4. The original proposal contained two questions about the game of numbers, namely paq to
show that if two numbers have the same prime factors then either both are good or both are bad, and pbq
to show that the word Wk introduced in the previous comment is indeed periodic. The Problem Selection
Committee thinks that the above version of the problem is somewhat easier, even though it demands to
prove a stronger result.
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N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

(1)

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

Answer. There are three kinds of such functions, which are: all constant functions, the floor
function, and the ceiling function.

Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for
all constant functions. Now consider any triple px, a, bq P Q ˆ Z ˆ Zą0 and set

q “
Yx` a

b

]

.

This means that q is an integer and bq ď x` a ă bpq ` 1q. It follows that bq ď txu ` a ă bpq ` 1q
holds as well, and thus we have

Z

txu ` a

b

^

“
Yx ` a

b

]

,

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling
function has the same property.

II. Let us now suppose conversely that the function f : Q ÝÑ Z satisfies (1) for all px, a, bq P
QˆZˆZą0. According to the behaviour of the restriction of f to the integers we distinguish two
cases.

Case 1: There is some m P Z such that fpmq ‰ m.

Write fpmq “ C and let η P t´1,`1u and b denote the sign and absolute value of fpmq ´ m,
respectively. Given any integer r, we may plug the triple pm, rb ´ C, bq into (1), thus getting
fprq “ fpr´ ηq. Starting with m and using induction in both directions, we deduce from this that
the equation fprq “ C holds for all integers r. Now any rational number y can be written in the
form y “ p

q
with pp, qq P ZˆZą0, and substituting pC´p, p´C, qq into (1) we get fpyq “ fp0q “ C.

Thus f is the constant function whose value is always C.

Case 2: One has fpmq “ m for all integers m.

Note that now the special case b “ 1 of (1) takes a particularly simple form, namely

fpxq ` a “ fpx ` aq for all px, aq P Q ˆ Z. (2)

Defining f
`

1

2

˘

“ ω we proceed in three steps.

Step A. We show that ω P t0, 1u.
If ω ď 0, we may plug

`

1

2
,´ω, 1 ´ 2ω

˘

into (1), obtaining 0 “ fp0q “ f
`

1

2

˘

“ ω. In the contrary
case ω ě 1 we argue similarly using the triple

`

1

2
, ω ´ 1, 2ω ´ 1

˘

.

Step B. We show that fpxq “ ω for all rational numbers x with 0 ă x ă 1.

Assume that this fails and pick some rational number a
b

P p0, 1q with minimal b such that fpa
b
q ‰ ω.

Obviously, gcdpa, bq “ 1 and b ě 2. If b is even, then a has to be odd and we can substitute
`

1

2
, a´1

2
, b
2

˘

into (1), which yields

f

ˆ

ω ` pa´ 1q{2
b{2

˙

“ f
´a

b

¯

‰ ω. (3)
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Recall that 0 ď pa ´ 1q{2 ă b{2. Thus, in both cases ω “ 0 and ω “ 1, the left-hand part of (3)
equals ω either by the minimality of b, or by fpωq “ ω. A contradiction.

Thus b has to be odd, so b “ 2k ` 1 for some k ě 1. Applying (1) to
`

1

2
, k, b

˘

we get

f

ˆ

ω ` k

b

˙

“ f

ˆ

1

2

˙

“ ω. (4)

Since a and b are coprime, there exist integers r P t1, 2, . . . , bu and m such that ra´ mb “ k ` ω.
Note that we actually have 1 ď r ă b, since the right hand side is not a multiple of b. If m
is negative, then we have ra ´ mb ą b ě k ` ω, which is absurd. Similarly, m ě r leads to
ra´ mb ă br ´ br “ 0, which is likewise impossible; so we must have 0 ď m ď r ´ 1.

We finally substitute
`

k`ω
b
, m, r

˘

into (1) and use (4) to learn

f
´ω ` m

r

¯

“ f
´a

b

¯

‰ ω.

But as above one may see that the left hand side has to equal ω due to the minimality of b. This
contradiction concludes our step B.

Step C. Now notice that if ω “ 0, then fpxq “ txu holds for all rational x with 0 ď x ă 1 and
hence by (2) this even holds for all rational numbers x. Similarly, if ω “ 1, then fpxq “ rxs holds
for all x P Q. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer,
proceeds as follows. Let square brackets indicate the floor function in case ω “ 0 and the ceiling function
if ω “ 1. We are to prove that fpxq “ rxs holds for all x P Q, and because of Step A and (2) we already
know this in case 2x P Z. Applying (1) to p2x, 0, 2q we get

fpxq “ f

ˆ

fp2xq
2

˙

,

and by the previous observation this yields

fpxq “
„

fp2xq
2



for all x P Q. (5)

An easy induction now shows

fpxq “
„

fp2nxq
2n



for all px, nq P Q ˆ Zą0. (6)

Now suppose first that x is not an integer but can be written in the form p
q
with p P Z and q P Zą0 both

being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging
n “ dm into (6) and using (2) we get

fpxq “
„

fp2dmxq
2dm



“
„

fpxq ` p2dm ´ 1qx
2dm



“
„

x` fpxq ´ x

2dm



.

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the
above fomula gives fpxq “ rxs. To complete the argument we just need to observe that if some y P Q

satisfies fpyq “ rys, then (5) yields f
`

y
2

˘

“ f
´

rys
2

¯

“
”

rys
2

ı

“
“

y
2

‰

.
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Solution 2. Here we just give another argument for the second case of the above solution. Again
we use equation (2). It follows that the set S of all zeros of f contains for each x P Q exactly one
term from the infinite sequence . . . , x´ 2, x´ 1, x, x` 1, x` 2, . . . .

Next we claim that

if pp, qq P Z ˆ Zą0 and p

q
P S, then p

q`1
P S holds as well. (7)

To see this we just plug
`

p

q
, p, q ` 1

˘

into (1), thus getting f
`

p

q`1

˘

“ f
`

p

q

˘

“ 0.

From this we get that

if x, y P Q, x ą y ą 0, and x P S, then y P S. (8)

Indeed, if we write x “ p

q
and y “ r

s
with p, q, r, s P Zą0, then ps ą qr and (7) tells us

0 “ f

ˆ

p

q

˙

“ f

ˆ

pr

qr

˙

“ f

ˆ

pr

qr ` 1

˙

“ . . . “ f

ˆ

pr

ps

˙

“ f

ˆ

r

s

˙

.

Essentially the same argument also establishes that

if x, y P Q, x ă y ă 0, and x P S, then y P S. (9)

From (8) and (9) we get 0 P S Ď p´1,`1q and hence the real number α “ suppSq exists and
satisfies 0 ď α ď 1.

Let us assume that we actually had 0 ă α ă 1. Note that fpxq “ 0 if x P p0, αq X Q by (8),
and fpxq “ 1 if x P pα, 1q X Q by (9) and (2). Let K denote the unique positive integer satisfying
Kα ă 1 ď pK ` 1qα. The first of these two inequalities entails α ă 1`α

K`1
, and thus there is a

rational number x P
`

α, 1`α
K`1

˘

. Setting y “ pK ` 1qx´ 1 and substituting py, 1, K ` 1q into (1) we
learn

f

ˆ

fpyq ` 1

K ` 1

˙

“ f

ˆ

y ` 1

K ` 1

˙

“ fpxq.

Since α ă x ă 1 and 0 ă y ă α, this simplifies to

f

ˆ

1

K ` 1

˙

“ 1.

But, as 0 ă 1

K`1
ď α, this is only possible if α “ 1

K`1
and fpαq “ 1. From this, however, we get

the contradiction

0 “ f

ˆ

1

pK ` 1q2
˙

“ f

ˆ

α ` 0

K ` 1

˙

“ f

ˆ

fpαq ` 0

K ` 1

˙

“ fpαq “ 1.

Thus our assumption 0 ă α ă 1 has turned out to be wrong and it follows that α P t0, 1u. If
α “ 0, then we have S Ď p´1, 0s, whence S “ p´1, 0s X Q, which in turn yields fpxq “ rxs for all
x P Q due to (2). Similarly, α “ 1 entails S “ r0, 1q X Q and fpxq “ txu for all x P Q. Thereby
the solution is complete.
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Comment 2. It seems that all solutions to this problems involve some case distinction separating the
constant solutions from the unbounded ones, though the “descriptions” of the cases may be different
depending on the work that has been done at the beginning of the solution. For instance, these two cases
can also be “f is periodic on the integers” and “f is not periodic on the integers”. The case leading to
the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions x ÞÝÑ txu and x ÞÝÑ rxs can easily be
treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem
interchanging these two functions. Namely, if a function f : Q ÝÑ Z satisfies (1), then so does the
function g : Q ÝÑ Z defined by gpxq “ ´fp´xq for all x P Q. For that reason, we could have restricted
our attention to the case ω “ 0 in the first solution and, once α P t0, 1u had been obtained, to the case
α “ 0 in the second solution.
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N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m. p˚q
A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)

Solution. For positive integers a and b, let us denote

fpa, bq “ arbνs ´ btaνu.

We will deal with various values of m; thus it is convenient to say that a pair pa, bq is m-good or
m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values fpa ` b, bq and fpa, b ` aq are related to fpa, bq. If
taνu ` tbνu ă 1, then we have tpa` bqνu “ taνu ` tbνu and rpa ` bqνs “ raνs ` rbνs ´ 1, so

fpa` b, bq “ pa` bqrbνs ´ bptaνu ` tbνuq “ fpa, bq ` bprbνs ´ tbνuq “ fpa, bq ` b

and

fpa, b` aq “ aprbνs ` raνs ´ 1q ´ pb` aqtaνu “ fpa, bq ` apraνs ´ 1 ´ taνuq “ fpa, bq.

Similarly, if taνu ` tbνu ě 1 then one obtains

fpa` b, bq “ fpa, bq and fpa, b` aq “ fpa, bq ` a.

So, in both cases one of the numbers fpa` b, aq and fpa, b` aq is equal to fpa, bq while the other
is greater than fpa, bq by one of a and b. Thus, exactly one of the pairs pa` b, bq and pa, b` aq is
excellent (for an appropriate value of m).

Now let us say that the pairs pa ` b, bq and pa, b ` aq are the children of the pair pa, bq, while
this pair is their parent. Next, if a pair pc, dq can be obtained from pa, bq by several passings from a
parent to a child, we will say that pc, dq is a descendant of pa, bq, while pa, bq is an ancestor of pc, dq
(a pair is neither an ancestor nor a descendant of itself). Thus each pair pa, bq has two children,
it has a unique parent if a ‰ b, and no parents otherwise. Therefore, each pair of distinct positive
integers has a unique ancestor of the form pa, aq; our aim is now to find how many m-excellent
descendants each such pair has.

Notice now that if a pair pa, bq is m-excellent then minta, bu ď m. Indeed, if a “ b then
fpa, aq “ a “ m, so the statement is valid. Otherwise, the pair pa, bq is a child of some pair pa1, b1q. If
b “ b1 and a “ a1 `b1, then we should have m “ fpa, bq “ fpa1, b1q`b1, so b “ b1 “ m´fpa1, b1q ă m.
Similarly, if a “ a1 and b “ b1 ` a1 then a ă m.

Let us consider the set Sm of all pairs pa, bq such that fpa, bq ď m and minta, bu ď m. Then
all the ancestors of the elements in Sm are again in Sm, and each element in Sm either is of the
form pa, aq with a ď m, or has a unique ancestor of this form. From the arguments above we see
that all m-excellent pairs lie in Sm.

We claim now that the set Sm is finite. Indeed, assume, for instance, that it contains infinitely
many pairs pc, dq with d ą 2m. Such a pair is necessarily a child of pc, d´cq, and thus a descendant
of some pair pc, d1q with m ă d1 ď 2m. Therefore, one of the pairs pa, bq P Sm with m ă b ď 2m
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has infinitely many descendants in Sm, and all these descendants have the form pa, b` kaq with k
a positive integer. Since fpa, b` kaq does not decrease as k grows, it becomes constant for k ě k0,
where k0 is some positive integer. This means that taνu ` tpb` kaqνu ă 1 for all k ě k0. But this
yields 1 ą tpb ` kaqνu “ tpb ` k0aqνu ` pk ´ k0qtaνu for all k ą k0, which is absurd.

Similarly, one can prove that Sm contains finitely many pairs pc, dq with c ą 2m, thus finitely
many elements at all.

We are now prepared for proving the following crucial lemma.

Lemma. Consider any pair pa, bq with fpa, bq ‰ m. Then the number gpa, bq of its m-excellent
descendants is equal to the number hpa, bq of ways to represent the number t “ m ´ fpa, bq as
t “ ka` ℓb with k and ℓ being some nonnegative integers.

Proof. We proceed by induction on the number N of descendants of pa, bq in Sm. If N “ 0 then
clearly gpa, bq “ 0. Assume that hpa, bq ą 0; without loss of generality, we have a ď b. Then,
clearly, m ´ fpa, bq ě a, so fpa, b ` aq ď fpa, bq ` a ď m and a ď m, hence pa, b ` aq P Sm which
is impossible. Thus in the base case we have gpa, bq “ hpa, bq “ 0, as desired.

Now let N ą 0. Assume that fpa` b, bq “ fpa, bq ` b and fpa, b` aq “ fpa, bq (the other case
is similar). If fpa, bq ` b ‰ m, then by the induction hypothesis we have

gpa, bq “ gpa` b, bq ` gpa, b` aq “ hpa` b, bq ` hpa, b ` aq.

Notice that both pairs pa` b, bq and pa, b` aq are descendants of pa, bq and thus each of them has
strictly less descendants in Sm than pa, bq does.

Next, each one of the hpa` b, bq representations of m´ fpa` b, bq “ m´ b´ fpa, bq as the sum
k1pa ` bq ` ℓ1b provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ă k1 ` ℓ1 ` 1 “ ℓ.
Similarly, each one of the hpa, b ` aq representations of m ´ fpa, b ` aq “ m ´ fpa, bq as the sum
k1a ` ℓ1pb ` aq provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ` ℓ1 ě ℓ1 “ ℓ. This
correspondence is obviously bijective, so

hpa, bq “ hpa ` b, bq ` hpa, b` aq “ gpa, bq,

as required.

Finally, if fpa, bq`b “ m then pa`b, bq ism-excellent, so gpa, bq “ 1`gpa, b`aq “ 1`hpa, b`aq
by the induction hypothesis. On the other hand, the number m´ fpa, bq “ b has a representation
0 ¨ a ` 1 ¨ b and sometimes one more representation as ka ` 0 ¨ b; this last representation exists
simultaneously with the representation m´fpa, b`aq “ ka`0 ¨ pb`aq, so hpa, bq “ 1`hpa, b`aq
as well. Thus in this case the step is also proved. l

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form pa, aq,
and each other m-excellent pair pa, bq has a unique ancestor of the form px, xq with x ă m. By the
lemma, for every x ă m the number of its m-excellent descendants is hpx, xq, which is the number
of ways to represent m ´ fpx, xq “ m ´ x as kx ` ℓx (with nonnegative integer k and ℓ). This
number is 0 if x {| m, and m{x otherwise. So the total number of excellent pairs is

1 `
ÿ

x|m, xăm

m

x
“ 1 `

ÿ

d|m, dą1

d “
ÿ

d|m

d,

as required.
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Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the
number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some
appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the
excellent pairs pa, bq with a ‰ b.

Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points Fνpnq “
pn, tnνuq and Cνpnq “ pn, rnνsq on the coordinate plane Oxy. Then p˚q reads as rOFνpaqCνpbqs “ m{2;
here r¨s stands for the signed area. Next, we rewrite in these terms the condition on a pair pa, bq to be
excellent. Let ℓν , ℓ

`
ν , and ℓ

´
ν be the lines determined by the equations y “ νx, y “ νx`1, and y “ νx´1,

respectively.

a). Firstly, we deal with all excellent pairs pa, bq with a ă b. Given some value of a, all the points C such
that rOFνpaqCs “ m{2 lie on some line fνpaq; if there exist any good pairs pa, bq at all, this line has to
contain at least one integral point, which happens exactly when gcdpa, taνuq | m.

Let Pνpaq be the point of intersection of ℓ`
ν and fνpaq, and let pνpaq be its abscissa; notice that pνpaq

is irrational if it is nonzero. Now, if pa, bq is good, then the point Cνpbq lies on fνpaq, which means that
the point of fνpaq with abscissa b lies between ℓν and ℓ`

ν and is integral. If in addition the pair pa, b´ aq
is not good, then the point of fνpaq with abscissa b ´ a lies above ℓ`

ν (see Fig. 1). Thus, the pair pa, bq
with b ą a is excellent exactly when pνpaq lies between b´ a and b, and the point of fνpaq with abscissa b
is integral (which means that this point is Cνpbq).

Notice now that, if pνpaq ą a, then the number of excellent pairs of the form pa, bq (with b ą a) is
gcdpa, taνuq.

a bb− a

Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)Fν(a)
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Pν(a)

ℓν

ℓ+
ν
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ab a− b
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Figure 1 Figure 2

b). Analogously, considering the pairs pa, bq with a ą b, we fix the value of b, introduce the line cνpbq
containing all the points F with rOFCνpbqs “ m{2, assume that this line contains an integral point
(which means gcdpb, rbνsq | m), and denote the common point of cνpbq and ℓ´

ν by Qνpbq, its abscissa
being qνpbq. Similarly to the previous case, we obtain that the pair pa, bq is excellent exactly when qνpaq
lies between a´ b and a, and the point of cνpbq with abscissa a is integral (see Fig. 2). Again, if qνpbq ą b,
then the number of excellent pairs of the form pa, bq (with a ą b) is gcdpb, rbνsq.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs
changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for
instance, it is relatively easy to make this calculation for ν P

`

1, 1 ` 1

m

˘

.)

Consider, for the initial value of ν, some excellent pair pa, tq with a ą t. As ν grows, this pair
eventually stops being excellent; this happens when the point Qνptq passes through Fνpaq. At the same
moment, the pair pa ` t, tq becomes excellent instead.

This process halts when the point Qνptq eventually disappears, i.e. when ν passes through the ratio
of the coordinates of the point T “ Cνptq. Hence, the point T afterwards is regarded as Fνptq. Thus, all
the old excellent pairs of the form pa, tq with a ą t disappear; on the other hand, the same number of
excellent pairs with the first element being t just appear.
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Similarly, if some pair pt, bq with t ă b is initially ν-excellent, then at some moment it stops being
excellent when Pνptq passes through Cνpbq; at the same moment, the pair pt, b´tq becomes excellent. This
process eventually stops when b ´ t ă t. At this moment, again the second element of the pair becomes
fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged,
as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly
by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially
much care should be applied to the limit points of this set, which are exactly the points when the line ℓν
passes through some point of the form Cνpbq.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same
technicalities remain in this way as well.
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