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Vicente Muñoz Velázquez
Juan Manuel Conde Calero
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Algebra

A1. Find all functions f : (0,∞) → (0,∞) such that

f(p)2 + f(q)2

f(r2) + f(s2)
=

p2 + q2

r2 + s2

for all p, q, r, s > 0 with pq = rs.

Solution. Let f satisfy the given condition. Setting p = q = r = s = 1 yields f(1)2 = f(1) and
hence f(1) = 1. Now take any x > 0 and set p = x, q = 1, r = s =

√
x to obtain

f(x)2 + 1

2f(x)
=

x2 + 1

2x
.

This recasts into

xf(x)2 + x = x2f(x) + f(x),
(
xf(x) − 1

)(
f(x) − x

)
= 0.

And thus,

for every x > 0, either f(x) = x or f(x) =
1

x
. (1)

Obviously, if

f(x) = x for all x > 0 or f(x) =
1

x
for all x > 0 (2)

then the condition of the problem is satisfied. We show that actually these two functions are
the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than
those in (2). Then f(a) 6= a and f(b) 6= 1/b for some a, b > 0. By (1), these values must be
f(a) = 1/a, f(b) = b. Applying now the equation with p = a, q = b, r = s =

√
ab we obtain

(a−2 + b2)/2f(ab) = (a2 + b2)/2ab ; equivalently,

f(ab) =
ab(a−2 + b2)

a2 + b2
. (3)

We know however (see (1)) that f(ab) must be either ab or 1/ab . If f(ab) = ab then by (3)
a−2 + b2 = a2 + b2, so that a = 1. But, as f(1) = 1, this contradicts the relation f(a) 6= a.
Likewise, if f(ab) = 1/ab then (3) gives a2b2(a−2 + b2) = a2 + b2, whence b = 1, in contradiction
to f(b) 6= 1/b . Thus indeed the functions listed in (2) are the only two solutions.
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Comment. The equation has as many as four variables with only one constraint pq = rs, leaving
three degrees of freedom and providing a lot of information. Various substitutions force various useful
properties of the function searched. We sketch one more method to reach conclusion (1); certainly
there are many others.

Noticing that f(1) = 1 and setting, first, p = q = 1, r =
√

x, s = 1/
√

x, and then p = x, q = 1/x,
r = s = 1, we obtain two relations, holding for every x > 0,

f(x) + f

(
1

x

)

= x +
1

x
and f(x)2 + f

(
1

x

)2

= x2 +
1

x2
. (4)

Squaring the first and subtracting the second gives 2f(x)f(1/x) = 2. Subtracting this from the second
relation of (4) leads to

(

f(x) − f

(
1

x

))2

=

(

x − 1

x

)2

or f(x) − f

(
1

x

)

= ±
(

x − 1

x

)

.

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).
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A2. (a) Prove the inequality

x2

(x − 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for real numbers x, y, z 6= 1 satisfying the condition xyz = 1.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this

inequality turns into equality.

Solution 1. (a) We start with the substitution

x

x − 1
= a,

y

y − 1
= b,

z

z − 1
= c, i.e., x =

a

a − 1
, y =

b

b − 1
, z =

c

c − 1
.

The inequality to be proved reads a2 + b2 + c2 ≥ 1. The new variables are subject to the
constraints a, b, c 6= 1 and the following one coming from the condition xyz = 1,

(a − 1)(b − 1)(c − 1) = abc.

This is successively equivalent to

a + b + c − 1 = ab + bc + ca,

2(a + b + c − 1) = (a + b + c)2 − (a2 + b2 + c2),

a2 + b2 + c2 − 2 = (a + b + c)2 − 2(a + b + c),

a2 + b2 + c2 − 1 = (a + b + c − 1)2.

Thus indeed a2 + b2 + c2 ≥ 1, as desired.

(b) From the equation a2 + b2 + c2 − 1 = (a + b + c − 1)2 we see that the proposed inequal-
ity becomes an equality if and only if both sums a2 + b2 + c2 and a + b + c have value 1. The
first of them is equal to (a + b + c)2 − 2(ab + bc + ca). So the instances of equality are described
by the system of two equations

a + b + c = 1, ab + bc + ca = 0

plus the constraint a, b, c 6= 1. Elimination of c leads to a2 + ab + b2 = a + b, which we regard
as a quadratic equation in b,

b2 + (a − 1)b + a(a − 1) = 0,

with discriminant
∆ = (a − 1)2 − 4a(a − 1) = (1 − a)(1 + 3a).

We are looking for rational triples (a, b, c); it will suffice to have a rational such that 1 − a
and 1 + 3a are both squares of rational numbers (then ∆ will be so too). Set a = k/m. We
want m − k and m + 3k to be squares of integers. This is achieved for instance by taking
m = k2 − k + 1 (clearly nonzero); then m − k = (k − 1)2, m + 3k = (k + 1)2. Note that dis-
tinct integers k yield distinct values of a = k/m.

And thus, if k is any integer and m = k2 − k + 1, a = k/m then ∆ = (k2 − 1)2/m2 and the
quadratic equation has rational roots b = (m − k ± k2 ∓ 1)/(2m). Choose e.g. the larger root,

b =
m − k + k2 − 1

2m
=

m + (m − 2)

2m
=

m − 1

m
.
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Computing c from a + b + c = 1 then gives c = (1 − k)/m. The condition a, b, c 6= 1 eliminates
only k = 0 and k = 1. Thus, as k varies over integers greater than 1, we obtain an infinite family
of rational triples (a, b, c)—and coming back to the original variables (x = a/(a − 1) etc.)—an
infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows
that the resulting triples are x = −k/(k − 1)2, y = k − k2, z = (k − 1)/k2; but the proof was
complete without listing them.)

Comment 1. There are many possible variations in handling the equation system a2 + b2 + c2 = 1,
a + b + c = 1 (a, b, c 6= 1) which of course describes a circle in the (a, b, c)-space (with three points
excluded), and finding infinitely many rational points on it.

Also the initial substitution x = a/(a − 1) (etc.) can be successfully replaced by other similar
substitutions, e.g. x = 1 − 1/α (etc.); or x = x′ − 1 (etc.); or 1 − yz = u (etc.)—eventually reducing
the inequality to (· · · )2 ≥ 0, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z)
as needed; let us produce just one more such example: x = (2r − 2)/(r + 1)2, y = (2r + 2)/(r − 1)2,
z = (r2 − 1)/4 where r can be any rational number different from 1 or −1.

Solution 2 (an outline). (a) Without changing variables, just setting z = 1/xy and clearing
fractions, the proposed inequality takes the form

(xy − 1)2
(
x2(y − 1)2 + y2(x − 1)2

)
+ (x − 1)2(y − 1)2 ≥ (x − 1)2(y − 1)2(xy − 1)2.

With the notation p = x + y, q = xy this becomes, after lengthy routine manipulation and a
lot of cancellation

q4 − 6q3 + 2pq2 + 9q2 − 6pq + p2 ≥ 0.

It is not hard to notice that the expression on the left is just (q2 − 3q + p)2, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same

expression, just written in terms of x and y; but then it is not that easy to see that it is a
square.)

(b) To have equality, one needs q2 − 3q + p = 0. Note that x and y are the roots of
the quadratic trinomial (in a formal variable t): t2 − pt + q. When q2 − 3q + p = 0, the
discriminant equals

δ = p2 − 4q = (3q − q2)2 − 4q = q(q − 1)2(q − 4).

Now it suffices to have both q and q − 4 squares of rational numbers (then p = 3q − q2 and
√

δ
are also rational, and so are the roots of the trinomial). On setting q = (n/m)2 = 4 + (l/m)2 the
requirement becomes 4m2 + l2 = n2 (with l, m, n being integers). This is just the Pythagorean
equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category
of easy problems).



11

A3. Let S ⊆ R be a set of real numbers. We say that a pair (f, g) of functions from S into S
is a Spanish Couple on S, if they satisfy the following conditions:

(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y ∈ S
with x < y;

(ii) The inequality f(g(g(x))) < g(f(x)) holds for all x ∈ S.

Decide whether there exists a Spanish Couple

(a) on the set S = N of positive integers;

(b) on the set S = {a − 1/b : a, b ∈ N}.

Solution. We show that the answer is NO for part (a), and YES for part (b).

(a) Throughout the solution, we will use the notation gk(x) =

k
︷ ︸︸ ︷

g(g(. . . g(x) . . .)), including
g0(x) = x as well.

Suppose that there exists a Spanish Couple (f, g) on the set N. From property (i) we have
f(x) ≥ x and g(x) ≥ x for all x ∈ N.

We claim that gk(x) ≤ f(x) for all k ≥ 0 and all positive integers x. The proof is done by
induction on k. We already have the base case k = 0 since x ≤ f(x). For the induction step
from k to k + 1, apply the induction hypothesis on g2(x) instead of x, then apply (ii):

g(gk+1(x)) = gk

(
g2(x)

)
≤ f

(
g2(x)

)
< g(f(x)).

Since g is increasing, it follows that gk+1(x) < f(x). The claim is proven.

If g(x) = x for all x ∈ N then f(g(g(x))) = f(x) = g(f(x)), and we have a contradiction
with (ii). Therefore one can choose an x0 ∈ S for which x0 < g(x0). Now consider the sequence
x0, x1, . . . where xk = gk(x0). The sequence is increasing. Indeed, we have x0 < g(x0) = x1,
and xk < xk+1 implies xk+1 = g(xk) < g(xk+1) = xk+2.

Hence, we obtain a strictly increasing sequence x0 < x1 < . . . of positive integers which on
the other hand has an upper bound, namely f(x0). This cannot happen in the set N of positive
integers, thus no Spanish Couple exists on N.

(b) We present a Spanish Couple on the set S = {a − 1/b : a, b ∈ N}.
Let

f(a − 1/b) = a + 1 − 1/b,

g(a − 1/b) = a − 1/(b + 3a).

These functions are clearly increasing. Condition (ii) holds, since

f(g(g(a− 1/b))) = (a + 1) − 1/(b + 2 · 3a) < (a + 1) − 1/(b + 3a+1) = g(f(a − 1/b)).

Comment. Another example of a Spanish couple is f(a − 1/b) = 3a − 1/b, g(a − 1/b) = a − 1/(a+b).
More generally, postulating f(a − 1/b) = h(a) − 1/b, g(a − 1/b) = a − 1/G(a, b) with h increasing
and G increasing in both variables, we get that f ◦ g ◦ g < g ◦ f holds if G

(
a,G(a, b)

)
< G

(
h(a), b

)
.

A search just among linear functions h(a) = Ca, G(a, b) = Aa + Bb results in finding that any in-
tegers A > 0, C > 2 and B = 1 produce a Spanish couple (in the example above, A = 1, C = 3). The
proposer’s example results from taking h(a) = a + 1, G(a, b) = 3a + b.
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A4. For an integer m, denote by t(m) the unique number in {1, 2, 3} such that m + t(m) is a
multiple of 3. A function f : Z → Z satisfies f(−1) = 0, f(0) = 1, f(1) = −1 and

f(2n + m) = f(2n − t(m)) − f(m) for all integers m, n ≥ 0 with 2n > m.

Prove that f(3p) ≥ 0 holds for all integers p ≥ 0.

Solution. The given conditions determine f uniquely on the positive integers. The signs of
f(1), f(2), . . . seem to change quite erratically. However values of the form f(2n − t(m)) are
sufficient to compute directly any functional value. Indeed, let n > 0 have base 2 representation
n = 2a0 +2a1 + · · ·+2ak , a0 > a1 > · · · > ak ≥ 0, and let nj = 2aj +2aj−1 + · · ·+2ak , j = 0, . . . , k.
Repeated applications of the recurrence show that f(n) is an alternating sum of the quantities
f(2aj − t(nj+1)) plus (−1)k+1. (The exact formula is not needed for our proof.)

So we focus attention on the values f(2n−1), f(2n−2) and f(2n−3). Six cases arise; more
specifically,

t(22k−3) = 2, t(22k−2) = 1, t(22k−1) = 3, t(22k+1−3) = 1, t(22k+1−2) = 3, t(22k+1−1) = 2.

Claim. For all integers k ≥ 0 the following equalities hold:

f(22k+1 − 3) = 0, f(22k+1 − 2) = 3k, f(22k+1 − 1) = −3k,

f(22k+2 − 3) = −3k, f(22k+2 − 2) = −3k, f(22k+2 − 1) = 2 · 3k.

Proof. By induction on k. The base k = 0 comes down to checking that f(2) = −1 and
f(3) = 2; the given values f(−1) = 0, f(0) = 1, f(1) = −1 are also needed. Suppose the claim
holds for k− 1. For f(22k+1 − t(m)), the recurrence formula and the induction hypothesis yield

f(22k+1 − 3) = f(22k + (22k − 3)) = f(22k − 2) − f(22k − 3) = −3k−1 + 3k−1 = 0,

f(22k+1 − 2) = f(22k + (22k − 2)) = f(22k − 1) − f(22k − 2) = 2 · 3k−1 + 3k−1 = 3k,

f(22k+1 − 1) = f(22k + (22k − 1)) = f(22k − 3) − f(22k − 1) = −3k−1 − 2 · 3k−1 = −3k.

For f(22k+2 − t(m)) we use the three equalities just established:

f(22k+2 − 3) = f(22k+1 + (22k+1 − 3)) = f(22k+1 − 1) − f(22k+1 − 3) = −3k − 0 = −3k,

f(22k+2 − 2) = f(22k+1 + (22k+1 − 2)) = f(22k+1 − 3) − f(22k − 2) = 0 − 3k = −3k,

f(22k+2 − 1) = f(22k+1 + (22k+1 − 1)) = f(22k+1 − 2) − f(22k+1 − 1) = 3k + 3k = 2 · 3k.

The claim follows.

A closer look at the six cases shows that f(2n − t(m)) ≥ 3(n−1)/2 if 2n − t(m) is divisible
by 3, and f(2n − t(m)) ≤ 0 otherwise. On the other hand, note that 2n − t(m) is divisible by 3
if and only if 2n + m is. Therefore, for all nonnegative integers m and n,

(i) f(2n − t(m)) ≥ 3(n−1)/2 if 2n + m is divisible by 3;

(ii) f(2n − t(m)) ≤ 0 if 2n + m is not divisible by 3.

One more (direct) consequence of the claim is that |f(2n − t(m))| ≤ 2
3
· 3n/2 for all m, n ≥ 0.

The last inequality enables us to find an upper bound for |f(m)| for m less than a given
power of 2. We prove by induction on n that |f(m)| ≤ 3n/2 holds true for all integers m, n ≥ 0
with 2n > m.
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The base n = 0 is clear as f(0) = 1. For the inductive step from n to n + 1, let m and n
satisfy 2n+1 > m. If m < 2n, we are done by the inductive hypothesis. If m ≥ 2n then
m = 2n + k where 2n > k ≥ 0. Now, by |f(2n − t(k))| ≤ 2

3
· 3n/2 and the inductive assumption,

|f(m)| = |f(2n − t(k)) − f(k)| ≤ |f(2n − t(k))| + |f(k)| ≤ 2

3
· 3n/2 + 3n/2 < 3(n+1)/2.

The induction is complete.

We proceed to prove that f(3p) ≥ 0 for all integers p ≥ 0. Since 3p is not a power of 2, its
binary expansion contains at least two summands. Hence one can write 3p = 2a + 2b + c where
a > b and 2b > c ≥ 0. Applying the recurrence formula twice yields

f(3p) = f(2a + 2b + c) = f(2a − t(2b + c)) − f(2b − t(c)) + f(c).

Since 2a + 2b + c is divisible by 3, we have f(2a − t(2b + c)) ≥ 3(a−1)/2 by (i). Since 2b + c is
not divisible by 3, we have f(2b − t(c)) ≤ 0 by (ii). Finally |f(c)| ≤ 3b/2 as 2b > c ≥ 0, so that
f(c) ≥ −3b/2. Therefore f(3p) ≥ 3(a−1)/2 − 3b/2 which is nonnegative because a > b.
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A5. Let a, b, c, d be positive real numbers such that

abcd = 1 and a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
.

Prove that

a + b + c + d <
b

a
+

c

b
+

d

c
+

a

d
.

Solution. We show that if abcd = 1, the sum a + b + c + d cannot exceed a certain weighted

mean of the expressions
a

b
+

b

c
+

c

d
+

d

a
and

b

a
+

c

b
+

d

c
+

a

d
.

By applying the AM-GM inequality to the numbers
a

b
,

a

b
,

b

c
and

a

d
, we obtain

a =
4

√

a4

abcd
=

4

√

a

b
· a

b
· b

c
· a

d
≤ 1

4

(
a

b
+

a

b
+

b

c
+

a

d

)

.

Analogously,

b ≤ 1

4

(
b

c
+

b

c
+

c

d
+

b

a

)

, c ≤ 1

4

(
c

d
+

c

d
+

d

a
+

c

b

)

and d ≤ 1

4

(
d

a
+

d

a
+

a

b
+

d

c

)

.

Summing up these estimates yields

a + b + c + d ≤ 3

4

(
a

b
+

b

c
+

c

d
+

d

a

)

+
1

4

(
b

a
+

c

b
+

d

c
+

a

d

)

.

In particular, if a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
then a + b + c + d <

b

a
+

c

b
+

d

c
+

a

d
.

Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to
each column of the 4 × 4 array

a/b b/c c/d d/a
a/b b/c c/d d/a
b/c c/d d/a a/b
a/d b/a c/b d/c

and adding up the resulting inequalities. The same table yields a stronger bound: If a, b, c, d > 0 and
abcd = 1 then (

a

b
+

b

c
+

c

d
+

d

a

)3 (
b

a
+

c

b
+

d

c
+

a

d

)

≥ (a + b + c + d)4.

It suffices to apply Hölder’s inequality to the sequences in the four rows, with weights 1/4:

(
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
b

c
+

c

d
+

d

a
+

a

b

)1/4 (
a

d
+

b

a
+

c

b
+

d

c

)1/4

≥
(

aaba

bbcd

)1/4

+

(
bbcb

ccda

)1/4

+

(
ccdc

ddab

)1/4

+

(
ddad

aabc

)1/4

= a + b + c + d.
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A6. Let f : R → N be a function which satisfies

f

(

x +
1

f(y)

)

= f

(

y +
1

f(x)

)

for all x, y ∈ R. (1)

Prove that there is a positive integer which is not a value of f .

Solution. Suppose that the statement is false and f(R) = N. We prove several properties of
the function f in order to reach a contradiction.

To start with, observe that one can assume f(0) = 1. Indeed, let a ∈ R be such that
f(a) = 1, and consider the function g(x) = f(x + a). By substituting x + a and y + a for x
and y in (1), we have

g

(

x +
1

g(y)

)

= f

(

x + a +
1

f(y + a)

)

= f

(

y + a +
1

f(x + a)

)

= g

(

y +
1

g(x)

)

.

So g satisfies the functional equation (1), with the additional property g(0) = 1. Also, g and f
have the same set of values: g(R) = f(R) = N. Henceforth we assume f(0) = 1.

Claim 1. For an arbitrary fixed c ∈ R we have

{

f

(

c +
1

n

)

: n ∈ N

}

= N.

Proof. Equation (1) and f(R) = N imply

f(R) =

{

f

(

x +
1

f(c)

)

: x ∈ R

}

=

{

f

(

c +
1

f(x)

)

: x ∈ R

}

⊂
{

f

(

c +
1

n

)

: n ∈ N

}

⊂ f(R).

The claim follows.

We will use Claim 1 in the special cases c = 0 and c = 1/3:
{

f

(
1

n

)

: n ∈ N

}

=

{

f

(
1

3
+

1

n

)

: n ∈ N

}

= N. (2)

Claim 2. If f(u) = f(v) for some u, v ∈ R then f(u+q) = f(v+q) for all nonnegative rational q.
Furthermore, if f(q) = 1 for some nonnegative rational q then f(kq) = 1 for all k ∈ N.

Proof. For all x ∈ R we have by (1)

f

(

u +
1

f(x)

)

= f

(

x +
1

f(u)

)

= f

(

x +
1

f(v)

)

= f

(

v +
1

f(x)

)

.

Since f(x) attains all positive integer values, this yields f(u + 1/n) = f(v + 1/n) for all n ∈ N.
Let q = k/n be a positive rational number. Then k repetitions of the last step yield

f(u + q) = f

(

u +
k

n

)

= f

(

v +
k

n

)

= f(v + q).

Now let f(q) = 1 for some nonnegative rational q, and let k ∈ N. As f(0) = 1, the previous
conclusion yields successively f(q) = f(2q), f(2q) = f(3q), . . . , f ((k − 1)q) = f(kq), as needed.

Claim 3. The equality f(q) = f(q + 1) holds for all nonnegative rational q.

Proof. Let m be a positive integer such that f(1/m) = 1. Such an m exists by (2). Applying
the second statement of Claim 2 with q = 1/m and k = m yields f(1) = 1.

Given that f(0) = f(1) = 1, the first statement of Claim 2 implies f(q) = f(q + 1) for all
nonnegative rational q.



16

Claim 4. The equality f

(
1

n

)

= n holds for every n ∈ N.

Proof. For a nonnegative rational q we set x = q, y = 0 in (1) and use Claim 3 to obtain

f

(
1

f(q)

)

= f

(

q +
1

f(0)

)

= f(q + 1) = f(q).

By (2), for each n ∈ N there exists a k ∈ N such that f(1/k) = n. Applying the last equation
with q = 1/k, we have

n = f

(
1

k

)

= f

(
1

f(1/k)

)

= f

(
1

n

)

.

Now we are ready to obtain a contradiction. Let n ∈ N be such that f(1/3 + 1/n) = 1.
Such an n exists by (2). Let 1/3 + 1/n = s/t, where s, t ∈ N are coprime. Observe that t > 1
as 1/3 + 1/n is not an integer. Choose k, l ∈ N so that that ks − lt = 1.

Because f(0) = f(s/t) = 1, Claim 2 implies f(ks/t) = 1. Now f(ks/t) = f(1/t + l); on the
other hand f(1/t + l) = f(1/t) by l successive applications of Claim 3. Finally, f(1/t) = t by
Claim 4, leading to the impossible t = 1. The solution is complete.
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A7. Prove that for any four positive real numbers a, b, c, d the inequality

(a − b)(a − c)

a + b + c
+

(b − c)(b − d)

b + c + d
+

(c − d)(c − a)

c + d + a
+

(d − a)(d − b)

d + a + b
≥ 0

holds. Determine all cases of equality.

Solution 1. Denote the four terms by

A =
(a − b)(a − c)

a + b + c
, B =

(b − c)(b − d)

b + c + d
, C =

(c − d)(c − a)

c + d + a
, D =

(d − a)(d − b)

d + a + b
.

The expression 2A splits into two summands as follows,

2A = A′ + A′′ where A′ =
(a − c)2

a + b + c
, A′′ =

(a − c)(a − 2b + c)

a + b + c
;

this is easily verified. We analogously represent 2B = B′ + B′′, 2C = C ′ + C ′′, 2B = D′ + D′′

and examine each of the sums A′ + B′ + C ′ + D′ and A′′ + B′′ + C ′′ + D′′ separately.
Write s = a + b + c + d ; the denominators become s − d, s − a, s − b, s − c. By the Cauchy-

Schwarz inequality,

( |a − c|√
s − d

·
√

s − d +
|b − d|√

s − a
·
√

s − a +
|c − a|√

s − b
·
√

s − b +
|d − b|√

s − c
·
√

s − c

)2

≤
(

(a − c)2

s − d
+

(b − d)2

s − a
+

(c − a)2

s − b
+

(d − b)2

s − c

)
(
4s − s

)
= 3s

(
A′ + B′ + C ′ + D′

)
.

Hence

A′ + B′ + C ′ + D′ ≥
(
2|a − c| + 2|b − d|

)2

3s
≥ 16 · |a − c| · |b − d|

3s
. (1)

Next we estimate the absolute value of the other sum. We couple A′′ with C ′′ to obtain

A′′ + C ′′ =
(a − c)(a + c − 2b)

s − d
+

(c − a)(c + a − 2d)

s − b

=
(a − c)(a + c − 2b)(s − b) + (c − a)(c + a − 2d)(s − d)

(s − d)(s − b)

=
(a − c)

(
−2b(s − b) − b(a + c) + 2d(s − d) + d(a + c)

)

s(a + c) + bd

=
3(a − c)(d − b)(a + c)

M
, with M = s(a + c) + bd.

Hence by cyclic shift

B′′ + D′′ =
3(b − d)(a − c)(b + d)

N
, with N = s(b + d) + ca.

Thus

A′′ + B′′ + C ′′ + D′′ = 3(a − c)(b − d)

(
b + d

N
− a + c

M

)

=
3(a − c)(b − d)W

MN
(2)

where
W = (b + d)M − (a + c)N = bd(b + d) − ac(a + c). (3)
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Note that
MN >

(
ac(a + c) + bd(b + d)

)
s ≥ |W | · s. (4)

Now (2) and (4) yield

|A′′ + B′′ + C ′′ + D′′| ≤ 3 · |a − c| · |b − d|
s

. (5)

Combined with (1) this results in

2(A + B + C + D) = (A′ + B′ + C ′ + D′) + (A′′ + B′′ + C ′′ + D′′)

≥ 16 · |a − c| · |b − d|
3s

− 3 · |a − c| · |b − d|
s

=
7 · |a − c| · |b − d|
3(a + b + c + d)

≥ 0.

This is the required inequality. From the last line we see that equality can be achieved only if
either a = c or b = d. Since we also need equality in (1), this implies that actually a = c and
b = d must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M , N , W from the preceding
solution; the definitions of M , N , W and relations (3), (4) in that solution did not depend on
the foregoing considerations. Starting from

2A =
(a − c)2 + 3(a + c)(a − c)

a + b + c
− 2a + 2c,

we get

2(A + C) = (a − c)2

(
1

s − d
+

1

s − b

)

+ 3(a + c)(a − c)

(
1

s − d
− 1

s − b

)

= (a − c)2 2s − b − d

M
+ 3(a + c)(a − c) · d − b

M
=

p(a − c)2 − 3(a + c)(a − c)(b − d)

M

where p = 2s − b − d = s + a + c. Similarly, writing q = s + b + d we have

2(B + D) =
q(b − d)2 − 3(b + d)(b − d)(c − a)

N
;

specific grouping of terms in the numerators has its aim. Note that pq > 2s2. By adding the
fractions expressing 2(A + C) and 2(B + D),

2(A + B + C + D) =
p(a − c)2

M
+

3(a − c)(b − d)W

MN
+

q(b − d)2

N

with W defined by (3).

Substitution x = (a − c)/M , y = (b − d)/N brings the required inequality to the form

2(A + B + C + D) = Mpx2 + 3Wxy + Nqy2 ≥ 0. (6)

It will be enough to verify that the discriminant ∆ = 9W 2 − 4MNpq of the quadratic trinomial
Mpt2 + 3Wt + Nq is negative; on setting t = x/y one then gets (6). The first inequality in (4)
together with pq > 2s2 imply 4MNpq > 8s3

(
ac(a + c) + bd(b + d)

)
. Since

(a + c)s3 > (a + c)4 ≥ 4ac(a + c)2 and likewise (b + d)s3 > 4bd(b + d)2,

the estimate continues as follows,

4MNpq > 8
(
4(ac)2(a + c)2 + 4(bd)2(b + d)2

)
> 32

(
bd(b + d) − ac(a + c)

)2
= 32W 2 ≥ 9W 2.

Thus indeed ∆ < 0. The desired inequality (6) hence results. It becomes an equality if and
only if x = y = 0; equivalently, if and only if a = c and simultaneously b = d.



19

Comment. The two solutions presented above do not differ significantly; large portions overlap. The
properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality,
applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic
trinomials.

The estimates in the proof of ∆ < 0 in the second solution seem to be very wasteful. However,
they come close to sharp when the terms in one of the pairs (a, c), (b, d) are equal and much bigger
than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers
a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely
those in which a and c are both greater or both smaller than b and d.

Solution 3.

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

=
(

(a − b)(a + b + d)
)(

(a − c)(a + c + d)
)

(b + c + d) =

= (a2 + ad − b2 − bd)(a2 + ad − c2 − cd)(b + c + d) =

=
(
a4+2a3d−a2b2−a2bd−a2c2−a2cd+a2d2−ab2d−abd2−ac2d−acd2+b2c2+b2cd+bc2d+bcd2

)
(b+c+d) =

= a4b + a4c + a4d + (b3c2 + a2d3) − a2c3 + (2a3d2 − b3a2 + c3b2)+

+(b3cd − c3da − d3ab) + (2a3bd + c3db − d3ac) + (2a3cd − b3da + d3bc)

+(−a2b2c + 3b2c2d − 2ac2d2) + (−2a2b2d + 2bc2d2) + (−a2bc2 − 2a2c2d − 2ab2d2 + 2b2cd2)+

+(−2a2bcd − ab2cd − abc2d − 2abcd2)

Introducing the notation Sxyzw =
∑

cyc

axbyczdw, one can write

∑

cyc

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

= S4100 + S4010 + S4001 + 2S3200 − S3020 + 2S3002 − S3110 + 2S3101 + 2S3011 − 3S2120 − 6S2111 =

+

(

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120

)

+

+

(

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111

)

+

+
9

16

(

S3200 − S2210 − S2201 + S3002

)

+
23

16

(

S3200 − 2S3101 + S3002

)

+
39

8

(

S3101 − S2111

)

,

where the expressions

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120 =

∑

cyc

(

a4b + bc4 +
1

2
a3bc +

1

2
abc3 − 3a2bc2

)

,

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111 =

∑

cyc

a2c

(

a − c − 3

4
b +

3

4
d

)2

,

S3200 − S2210 − S2201 + S3002 =
∑

cyc

b2(a3 − a2c − ac2 + c3) =
∑

cyc

b2(a + c)(a − c)2,

S3200 − 2S3101 + S3002 =
∑

cyc

a3(b − d)2 and S3101 − S2111 =
1

3

∑

cyc

bd(2a3 + c3 − 3a2c)

are all nonnegative.
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Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and
have positive length. Such a rectangle will be called a box . Two boxes intersect if they have a
common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

Solution. The maximum number of such boxes is 6. One example is shown in the figure.

B2B1

B4
B3

B6

B5

Now we show that 6 is the maximum. Suppose that boxes B1, . . . , Bn satisfy the condition.
Let the closed intervals Ik and Jk be the projections of Bk onto the x- and y-axis, for 1 ≤ k ≤ n.

If Bi and Bj intersect, with a common point (x, y), then x ∈ Ii ∩ Ij and y ∈ Ji ∩ Jj. So the
intersections Ii ∩ Ij and Ji ∩Jj are nonempty. Conversely, if x ∈ Ii ∩ Ij and y ∈ Ji∩Jj for some
real numbers x, y, then (x, y) is a common point of Bi and Bj. Putting it around, Bi and Bj

are disjoint if and only if their projections on at least one coordinate axis are disjoint.
For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and

nonadjacent otherwise.
The adjacent boxes Bk and Bk+1 do not intersect for each k = 1, . . . , n. Hence (Ik, Ik+1)

or (Jk, Jk+1) is a pair of disjoint intervals, 1 ≤ k ≤ n. So there are at least n pairs of disjoint
intervals among (I1, I2), . . . , (In−1, In), (In, I1); (J1, J2), . . . , (Jn−1, Jn), (Jn, J1).

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect,
too. Then the claim below shows that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are
disjoint, and the same holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1). Consequently n ≤ 3 + 3 = 6,
as stated. Thus we are left with the claim and its justification.

Claim. Let ∆1, ∆2, . . . , ∆n be intervals on a straight line such that every two nonadjacent
intervals intersect. Then ∆k and ∆k+1 are disjoint for at most three values of k = 1, . . . , n.

Proof. Denote ∆k = [ak, bk], 1 ≤ k ≤ n. Let α = max(a1, . . . , an) be the rightmost among
the left endpoints of ∆1, . . . , ∆n, and let β = min(b1, . . . , bn) be the leftmost among their right
endpoints. Assume that α = a2 without loss of generality.

If α ≤ β then ai ≤ α ≤ β ≤ bi for all i. Every ∆i contains α, and thus no disjoint pair
(∆i, ∆i+1) exists.
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If β < α then β = bi for some i such that ai < bi = β < α = a2 < b2, hence ∆2 and ∆i are
disjoint. Now ∆2 intersects all remaining intervals except possibly ∆1 and ∆3, so ∆2 and ∆i

can be disjoint only if i = 1 or i = 3. Suppose by symmetry that i = 3; then β = b3. Since
each of the intervals ∆4, . . . , ∆n intersects ∆2, we have ai ≤ α ≤ bi for i = 4, . . . , n. Therefore
α ∈ ∆4 ∩ . . . ∩ ∆n, in particular ∆4 ∩ . . . ∩ ∆n 6= ∅. Similarly, ∆5, . . . , ∆n, ∆1 all intersect ∆3,
so that ∆5 ∩ . . . ∩ ∆n ∩ ∆1 6= ∅ as β ∈ ∆5 ∩ . . . ∩ ∆n ∩ ∆1. This leaves (∆1, ∆2), (∆2, ∆3) and
(∆3, ∆4) as the only candidates for disjoint interval pairs, as desired.

Comment.The problem is a two-dimensional version of the original proposal which is included below.
The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee
to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.

Original proposal. We consider parallelepipeds in three-dimensional space, with edges par-
allel to the coordinate axes and of positive length. Such a parallelepiped will be called a box .
Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

The maximum number of such boxes is 9. Suppose that boxes B1, . . . , Bn satisfy the con-
dition. Let the closed intervals Ik, Jk and Kk be the projections of box Bk onto the x-, y-
and z-axis, respectively, for 1 ≤ k ≤ n. As before, Bi and Bj are disjoint if and only if their
projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and
nonadjacent otherwise.

The adjacent boxes Bi and Bi+1 do not intersect for each i = 1, . . . , n. Hence at least one of
the pairs (Ii, Ii+1), (Ji, Ji+1) and (Ki, Ki+1) is a pair of disjoint intervals. So there are at least
n pairs of disjoint intervals among (Ii, Ii+1), (Ji, Ji+1), (Ki, Ki+1), 1 ≤ i ≤ n.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes
intersect, too. Referring to the Claim in the solution of the two-dimensional version, we
cocnclude that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are disjoint; the same
holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1) and (K1, K2), . . . , (Kn−1, Kn), (Kn, K1). Consequently
n ≤ 3 + 3 + 3 = 9, as stated.

For n = 9, the desired system of boxes exists. Consider the intervals in the following table:

i Ii Ji Ki

1 [1, 4] [1, 6] [3, 6]
2 [5, 6] [1, 6] [1, 6]
3 [1, 2] [1, 6] [1, 6]
4 [3, 6] [1, 4] [1, 6]
5 [1, 6] [5, 6] [1, 6]
6 [1, 6] [1, 2] [1, 6]
7 [1, 6] [3, 6] [1, 4]
8 [1, 6] [1, 6] [5, 6]
9 [1, 6] [1, 6] [1, 2]

We have I1 ∩ I2 = I2 ∩ I3 = I3 ∩ I4 = ∅, J4 ∩ J5 = J5 ∩ J6 = J6 ∩ J7 = ∅, and finally
K7 ∩ K8 = K8 ∩ K9 = K9 ∩ K1 = ∅. The intervals in each column intersect in all other cases.
It follows that the boxes Bi = Ii × Ji × Ki, i = 1, . . . , 9, have the stated property.
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C2. For every positive integer n determine the number of permutations (a1, a2, . . . , an) of the
set {1, 2, . . . , n} with the following property:

2(a1 + a2 + · · ·+ ak) is divisible by k for k = 1, 2, . . . , n.

Solution. For each n let Fn be the number of permutations of {1, 2, . . . , n} with the required
property; call them nice. For n = 1, 2, 3 every permutation is nice, so F1 = 1, F2 = 2, F3 = 6.

Take an n > 3 and consider any nice permutation (a1, a2, . . . , an) of {1, 2, . . . , n}. Then
n − 1 must be a divisor of the number

2(a1 + a2 + · · · + an−1) = 2
(
(1 + 2 + · · · + n) − an

)

= n(n + 1) − 2an = (n + 2)(n − 1) + (2 − 2an).

So 2an − 2 must be divisible by n − 1, hence equal to 0 or n − 1 or 2n − 2. This means that

an = 1 or an =
n + 1

2
or an = n.

Suppose that an = (n + 1)/2. Since the permutation is nice, taking k = n − 2 we get that n − 2
has to be a divisor of

2(a1 + a2 + · · · + an−2) = 2
(
(1 + 2 + · · · + n) − an − an−1

)

= n(n + 1) − (n + 1) − 2an−1 = (n + 2)(n − 2) + (3 − 2an−1).

So 2an−1 − 3 should be divisible by n − 2, hence equal to 0 or n − 2 or 2n − 4. Obviously 0 and
2n − 4 are excluded because 2an−1 − 3 is odd. The remaining possibility (2an−1 − 3 = n − 2)
leads to an−1 = (n + 1)/2 = an, which also cannot hold. This eliminates (n + 1)/2 as a possible
value of an. Consequently an = 1 or an = n.

If an = n then (a1, a2, . . . , an−1) is a nice permutation of {1, 2, . . . , n−1}. There are Fn−1

such permutations. Attaching n to any one of them at the end creates a nice permutation of
{1, 2, . . . , n}.

If an = 1 then (a1−1, a2−1, . . . , an−1−1) is a permutation of {1, 2, . . . , n−1}. It is also nice
because the number

2
(
(a1−1) + · · ·+ (ak−1)

)
= 2(a1 + · · ·+ ak) − 2k

is divisible by k, for any k ≤ n − 1. And again, any one of the Fn−1 nice permutations
(b1, b2, . . . , bn−1) of {1, 2, . . . , n−1} gives rise to a nice permutation of {1, 2, . . . , n} whose last
term is 1, namely (b1+1, b2+1, . . . , bn−1+1, 1).

The bijective correspondences established in both cases show that there are Fn−1 nice per-
mutations of {1, 2, . . . , n} with the last term 1 and also Fn−1 nice permutations of {1, 2, . . . , n}
with the last term n. Hence follows the recurrence Fn = 2Fn−1. With the base value F3 = 6
this gives the outcome formula Fn = 3 · 2n−2 for n ≥ 3.
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C3. In the coordinate plane consider the set S of all points with integer coordinates. For a
positive integer k, two distinct points A, B ∈ S will be called k-friends if there is a point C ∈ S
such that the area of the triangle ABC is equal to k. A set T ⊂ S will be called a k-clique
if every two points in T are k-friends. Find the least positive integer k for which there exists
a k-clique with more than 200 elements.

Solution. To begin, let us describe those points B ∈ S which are k-friends of the point (0, 0).
By definition, B = (u, v) satisfies this condition if and only if there is a point C = (x, y) ∈ S
such that 1

2
|uy − vx| = k. (This is a well-known formula expressing the area of triangle ABC

when A is the origin.)
To say that there exist integers x, y for which |uy − vx| = 2k, is equivalent to saying that the

greatest common divisor of u and v is also a divisor of 2k. Summing up, a point B = (u, v) ∈ S
is a k-friend of (0, 0) if and only if gcd(u, v) divides 2k.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are
k-friends, so are their translates. It follows that two points A, B ∈ S, A = (s, t), B = (u, v), are
k-friends if and only if the point (u − s, v − t) is a k-friend of (0, 0); i.e., if gcd(u − s, v − t)|2k.

Let n be a positive integer which does not divide 2k. We claim that a k-clique cannot have
more than n2 elements.

Indeed, all points (x, y) ∈ S can be divided into n2 classes determined by the remainders
that x and y leave in division by n. If a set T has more than n2 elements, some two points
A, B ∈ T , A = (s, t), B = (u, v), necessarily fall into the same class. This means that n|u − s
and n|v − t. Hence n|d where d = gcd(u − s, v − t). And since n does not divide 2k, also d
does not divide 2k. Thus A and B are not k-friends and the set T is not a k-clique.

Now let M(k) be the least positive integer which does not divide 2k. Write M(k) = m for
the moment and consider the set T of all points (x, y) with 0 ≤ x, y < m. There are m2 of
them. If A = (s, t), B = (u, v) are two distinct points in T then both differences |u − s|, |v − t|
are integers less than m and at least one of them is positive. By the definition of m, every
positive integer less than m divides 2k. Therefore u − s (if nonzero) divides 2k, and the same
is true of v − t. So 2k is divisible by gcd(u − s, v − t), meaning that A, B are k-friends. Thus
T is a k-clique.

It follows that the maximum size of a k-clique is M(k)2, with M(k) defined as above. We
are looking for the minimum k such that M(k)2 > 200.

By the definition of M(k), 2k is divisible by the numbers 1, 2, . . . , M(k)−1, but not by
M(k) itself. If M(k)2 > 200 then M(k) ≥ 15. Trying to hit M(k) = 15 we get a contradiction
immediately (2k would have to be divisible by 3 and 5, but not by 15).

So let us try M(k) = 16. Then 2k is divisible by the numbers 1, 2, . . . , 15, hence also by
their least common multiple L, but not by 16. And since L is not a multiple of 16, we infer
that k = L/2 is the least k with M(k) = 16.

Finally, observe that if M(k) ≥ 17 then 2k must be divisible by the least common multiple
of 1, 2, . . . , 16, which is equal to 2L. Then 2k ≥ 2L, yielding k > L/2.

In conclusion, the least k with the required property is equal to L/2 = 180180.
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C4. Let n and k be fixed positive integers of the same parity, k ≥ n. We are given 2n lamps
numbered 1 through 2n; each of them can be on or off. At the beginning all lamps are off. We
consider sequences of k steps. At each step one of the lamps is switched (from off to on or from
on to off).

Let N be the number of k-step sequences ending in the state: lamps 1, . . . , n on, lamps
n+1, . . . , 2n off.

Let M be the number of k-step sequences leading to the same state and not touching lamps
n+1, . . . , 2n at all.

Find the ratio N/M .

Solution. A sequence of k switches ending in the state as described in the problem statement
(lamps 1, . . . , n on, lamps n+1, . . . , 2n off ) will be called an admissible process. If, moreover,
the process does not touch the lamps n+1, . . . , 2n, it will be called restricted. So there are N
admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps 1, . . . , n goes from off

to on, so it is switched an odd number of times; and each one of the lamps n+1, . . . , 2n goes
from off to off, so it is switched an even number of times.

Notice that M > 0; i.e., restricted admissible processes do exist (it suffices to switch each
one of the lamps 1, . . . , n just once and then choose one of them and switch it k − n times,
which by hypothesis is an even number).

Consider any restricted admissible process p. Take any lamp `, 1 ≤ ` ≤ n, and suppose
that it was switched k` times. As noticed, k` must be odd. Select arbitrarily an even number
of these k` switches and replace each of them by the switch of lamp n+`. This can be done
in 2k`−1 ways (because a k`-element set has 2k`−1 subsets of even cardinality). Notice that
k1 + · · · + kn = k.

These actions are independent, in the sense that the action involving lamp ` does not
affect the action involving any other lamp. So there are 2k1−1 · 2k2−1 · · · 2kn−1 = 2k−n ways of
combining these actions. In any of these combinations, each one of the lamps n+1, . . . , 2n gets
switched an even number of times and each one of the lamps 1, . . . , n remains switched an odd
number of times, so the final state is the same as that resulting from the original process p.

This shows that every restricted admissible process p can be modified in 2k−n ways, giving
rise to 2k−n distinct admissible processes (with all lamps allowed).

Now we show that every admissible process q can be achieved in that way. Indeed, it is
enough to replace every switch of a lamp with a label ` > n that occurs in q by the switch of
the corresponding lamp `−n; in the resulting process p the lamps n+1, . . . , 2n are not involved.

Switches of each lamp with a label ` > n had occurred in q an even number of times. So
the performed replacements have affected each lamp with a label ` ≤ n also an even number of
times; hence in the overall effect the final state of each lamp has remained the same. This means
that the resulting process p is admissible—and clearly restricted, as the lamps n+1, . . . , 2n are
not involved in it any more.

If we now take process p and reverse all these replacements, then we obtain process q.
These reversed replacements are nothing else than the modifications described in the foregoing
paragraphs.

Thus there is a one–to–(2k−n) correspondence between the M restricted admissible processes
and the total of N admissible processes. Therefore N/M = 2k−n.



26

C5. Let S = {x1, x2, . . . , xk+`} be a (k + `)-element set of real numbers contained in the
interval [0, 1]; k and ` are positive integers. A k-element subset A ⊂ S is called nice if

∣
∣
∣
∣
∣
∣

1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A

xj

∣
∣
∣
∣
∣
∣

≤ k + `

2k`
.

Prove that the number of nice subsets is at least
2

k + `

(
k + `

k

)

.

Solution. For a k-element subset A ⊂ S, let f(A) =
1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A

xj . Denote
k + `

2k`
= d.

By definition a subset A is nice if |f(A)| ≤ d.

To each permutation (y1, y2, . . . , yk+`) of the set S = {x1, x2, . . . , xk+`} we assign k+` subsets
of S with k elements each, namely Ai = {yi, yi+1, . . . , yi+k−1}, i = 1, 2, . . . , k + `. Indices are
taken modulo k + ` here and henceforth. In other words, if y1, y2, . . . , yk+` are arranged around
a circle in this order, the sets in question are all possible blocks of k consecutive elements.

Claim. At least two nice sets are assigned to every permutation of S.

Proof. Adjacent sets Ai and Ai+1 differ only by the elements yi and yi+k, i = 1, . . . , k + `. By
the definition of f , and because yi, yi+k ∈ [0, 1],

|f(Ai+1) − f(Ai)| =

∣
∣
∣
∣

(
1

k
+

1

`

)

(yi+k − yi)

∣
∣
∣
∣
≤ 1

k
+

1

`
= 2d.

Each element yi ∈ S belongs to exactly k of the sets A1, . . . , Ak+`. Hence in k of the
expressions f(A1), . . . , f(Ak+`) the coefficient of yi is 1/k; in the remaining ` expressions, its
coefficient is −1/`. So the contribution of yi to the sum of all f(Ai) equals k · 1/k− ` · 1/` = 0.
Since this holds for all i, it follows that f(A1) + · · ·+ f(Ak+`) = 0.

If f(Ap) = min f(Ai), f(Aq) = max f(Ai), we obtain in particular f(Ap) ≤ 0, f(Aq) ≥ 0.
Let p < q (the case p > q is analogous; and the claim is true for p = q as f(Ai) = 0 for all i).

We are ready to prove that at least two of the sets A1, . . . , Ak+` are nice. The interval [−d, d]
has length 2d, and we saw that adjacent numbers in the circular arrangement f(A1), . . . , f(Ak+`)
differ by at most 2d. Suppose that f(Ap) < −d and f(Aq) > d. Then one of the numbers
f(Ap+1), . . . , f(Aq−1) lies in [−d, d], and also one of the numbers f(Aq+1), . . . , f(Ap−1) lies there.
Consequently, one of the sets Ap+1, . . . , Aq−1 is nice, as well as one of the sets Aq+1, . . . , Ap−1.
If −d ≤ f(Ap) and f(Aq) ≤ d then Ap and Aq are nice.

Let now f(Ap) < −d and f(Aq) ≤ d. Then f(Ap) + f(Aq) < 0, and since
∑

f(Ai) = 0,
there is an r 6= q such that f(Ar) > 0. We have 0 < f(Ar) ≤ f(Aq) ≤ d, so the sets f(Ar)
and f(Aq) are nice. The only case remaining, −d ≤ f(Ap) and d < f(Aq), is analogous.

Apply the claim to each of the (k + `)! permutations of S = {x1, x2, . . . , xk+`}. This gives
at least 2(k + `)! nice sets, counted with repetitions: each nice set is counted as many times as
there are permutations to which it is assigned.

On the other hand, each k-element set A ⊂ S is assigned to exactly (k+`) k! `! permutations.
Indeed, such a permutation (y1, y2, . . . , yk+`) is determined by three independent choices: an in-
dex i ∈ {1, 2, . . . , k+`} such that A = {yi, yi+1, . . . , yi+k−1}, a permutation (yi, yi+1, . . . , yi+k−1)
of the set A, and a permutation (yi+k, yi+k+1, . . . , yi−1) of the set S \ A.

In summary, there are at least
2(k + `)!

(k + `) k! `!
=

2

k + `

(
k + `

k

)

nice sets.
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C6. For n ≥ 2, let S1, S2, . . . , S2n be 2n subsets of A = {1, 2, 3, . . . , 2n+1} that satisfy the
following property: There do not exist indices a and b with a < b and elements x, y, z ∈ A with
x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Prove that at least one of the sets S1, S2, . . . , S2n

contains no more than 4n elements.

Solution 1. We prove that there exists a set Sa with at most 3n + 1 elements.
Given a k ∈ {1, . . . , n}, we say that an element z ∈ A is k-good to a set Sa if z ∈ Sa and

Sa contains two other elements x and y with x < y < z such that z − y < 2k and z − x ≥ 2k.
Also, z ∈ A will be called good to Sa if z is k-good to Sa for some k = 1, . . . , n.

We claim that each z ∈ A can be k-good to at most one set Sa. Indeed, suppose on the
contrary that z is k-good simultaneously to Sa and Sb, with a < b. Then there exist ya ∈ Sa,
ya < z, and xb ∈ Sb, xb < z, such that z − ya < 2k and z − xb ≥ 2k. On the other hand, since
z ∈ Sa∩Sb, by the condition of the problem there is no element of Sa strictly between xb and z.
Hence ya ≤ xb, implying z− ya ≥ z−xb. However this contradicts z− ya < 2k and z−xb ≥ 2k.
The claim follows.

As a consequence, a fixed z ∈ A can be good to at most n of the given sets (no more than
one of them for each k = 1, . . . , n).

Furthermore, let u1 < u2 < · · · < um < · · · < up be all elements of a fixed set Sa that are
not good to Sa. We prove that um − u1 > 2(um−1 − u1) for all m ≥ 3.

Indeed, assume that um − u1 ≤ 2(um−1 − u1) holds for some m ≥ 3. This inequality can be
written as 2(um − um−1) ≤ um − u1. Take the unique k such that 2k ≤ um − u1 < 2k+1. Then
2(um − um−1) ≤ um − u1 < 2k+1 yields um − um−1 < 2k. However the elements z = um, x = u1,
y = um−1 of Sa then satisfy z − y < 2k and z − x ≥ 2k, so that z = um is k-good to Sa.

Thus each term of the sequence u2 −u1, u3 −u1, . . . , up −u1 is more than twice the previous
one. Hence up − u1 > 2p−1(u2 − u1) ≥ 2p−1. But up ∈ {1, 2, 3, . . . , 2n+1}, so that up ≤ 2n+1.
This yields p − 1 ≤ n, i. e. p ≤ n + 1.

In other words, each set Sa contains at most n + 1 elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets Sa that are good to

the respective set, and with blue the ones that are not good. Then the total number of red
elements, counting multiplicities, is at most n · 2n+1 (each z ∈ A can be marked red in at
most n sets). The total number of blue elements is at most (n + 1)2n (each set Sa contains
at most n + 1 blue elements). Therefore the sum of cardinalities of S1, S2, . . . , S2n does not
exceed (3n + 1)2n. By averaging, the smallest set has at most 3n + 1 elements.

Solution 2. We show that one of the sets Sa has at most 2n + 1 elements. In the sequel | · |
denotes the cardinality of a (finite) set.

Claim. For n ≥ 2, suppose that k subsets S1, . . . , Sk of {1, 2, . . . , 2n} (not necessarily different)
satisfy the condition of the problem. Then

k∑

i=1

(|Si| − n) ≤ (2n − 1)2n−2.

Proof. Observe that if the sets Si (1 ≤ i ≤ k) satisfy the condition then so do their arbitrary
subsets Ti (1 ≤ i ≤ k). The condition also holds for the sets t + Si = {t + x | x ∈ Si} where t
is arbitrary.

Note also that a set may occur more than once among S1, . . . , Sk only if its cardinality is
less than 3, in which case its contribution to the sum

∑k
i=1(|Si| − n) is nonpositive (as n ≥ 2).

The proof is by induction on n. In the base case n = 2 we have subsets Si of {1, 2, 3, 4}.
Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of
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them occurs at most once among S1, . . . , Sk. If Si = {1, 2, 3, 4} for some i then no Sj is a

3-element subset in view of the condition, hence
∑k

i=1(|Si| − 2) ≤ 2. By the condition again,
it is impossible that Si = {1, 3, 4} and Sj = {2, 3, 4} for some i, j. So if |Si| ≤ 3 for all i then
at most 3 summands |Si| − 2 are positive, corresponding to 3-element subsets. This implies
∑k

i=1(|Si| − 2) ≤ 3, therefore the conclusion is true for n = 2.
Suppose that the claim holds for some n ≥ 2, and let the sets S1, . . . , Sk ⊆ {1, 2, . . . , 2n+1}

satisfy the given property. Denote Ui = Si ∩ {1, 2, . . . , 2n}, Vi = Si ∩ {2n + 1, . . . , 2n+1}. Let

I = {i | 1 ≤ i ≤ k, |Ui| 6= 0}, J = {1, . . . , k} \ I.

The sets Sj with j ∈ J are all contained in {2n + 1, . . . , 2n+1}, so the induction hypothesis
applies to their translates −2n +Sj which have the same cardinalities. Consequently, this gives
∑

j∈J(|Sj| − n) ≤ (2n − 1)2n−2, so that

∑

j∈J

(|Sj | − (n + 1)) ≤
∑

j∈J

(|Sj| − n) ≤ (2n − 1)2n−2. (1)

For i ∈ I, denote by vi the least element of Vi. Observe that if Va and Vb intersect, with a < b,
a, b ∈ I, then va is their unique common element. Indeed, let z ∈ Va ∩ Vb ⊆ Sa ∩ Sb and let m
be the least element of Sb. Since b ∈ I, we have m ≤ 2n. By the condition, there is no element
of Sa strictly between m ≤ 2n and z > 2n, which implies z = va.

It follows that if the element vi is removed from each Vi, a family of pairwise disjoint sets
Wi = Vi \ {vi} is obtained, i ∈ I (we assume Wi = ∅ if Vi = ∅). As Wi ⊆ {2n + 1, . . . , 2n+1} for
all i, we infer that

∑

i∈I |Wi| ≤ 2n. Therefore
∑

i∈I(|Vi| − 1) ≤ ∑

i∈I |Wi| ≤ 2n.
On the other hand, the induction hypothesis applies directly to the sets Ui, i ∈ I, so that

∑

i∈I(|Ui| − n) ≤ (2n − 1)2n−2. In summary,

∑

i∈I

(|Si| − (n + 1)) =
∑

i∈I

(|Ui| − n) +
∑

i∈I

(|Vi| − 1) ≤ (2n − 1)2n−2 + 2n. (2)

The estimates (1) and (2) are sufficient to complete the inductive step:

k∑

i=1

(|Si| − (n + 1)) =
∑

i∈I

(|Si| − (n + 1)) +
∑

j∈J

(|Sj| − (n + 1))

≤ (2n − 1)2n−2 + 2n + (2n − 1)2n−2 = (2n + 1)2n−1.

Returning to the problem, consider k = 2n subsets S1, S2, . . . , S2n of {1, 2, 3, . . . , 2n+1}. If
they satisfy the given condition, the claim implies

∑2n

i=1(|Si| − (n + 1)) ≤ (2n + 1)2n−1. By
averaging again, we see that the smallest set has at most 2n + 1 elements.

Comment. It can happen that each set Si has cardinality at least n + 1. Here is an example by the
proposer.

For i = 1, . . . , 2n, let Si = {i + 2k | 0 ≤ k ≤ n}. Then |Si| = n + 1 for all i. Suppose that there
exist a < b and x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Hence z = a + 2k = b + 2l for some k > l.
Since y ∈ Sa and y < z, we have y ≤ a + 2k−1. So the element x ∈ Sb satisfies

x < y ≤ a + 2k−1 = z − 2k−1 ≤ z − 2l = b.

However the least element of Sb is b + 1, a contradiction.



Geometry

G1. In an acute-angled triangle ABC, point H is the orthocentre and A0, B0, C0 are the
midpoints of the sides BC, CA, AB, respectively. Consider three circles passing through
H : ωa around A0, ωb around B0 and ωc around C0. The circle ωa intersects the line BC at
A1 and A2; ωb intersects CA at B1 and B2; ωc intersects AB at C1 and C2. Show that the
points A1, A2, B1, B2, C1, C2 lie on a circle.

Solution 1. The perpendicular bisectors of the segments A1A2, B1B2, C1C2 are also the
perpendicular bisectors of BC, CA, AB. So they meet at O, the circumcentre of ABC. Thus
O is the only point that can possibly be the centre of the desired circle.

From the right triangle OA0A1 we get

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2. (1)

Let K be the midpoint of AH and let L be the midpoint of CH . Since A0 and B0 are the
midpoints of BC and CA, we see that A0L‖BH and B0L‖AH . Thus the segments A0L and B0L
are perpendicular to AC and BC, hence parallel to OB0 and OA0, respectively. Consequently
OA0LB0 is a parallelogram, so that OA0 and B0L are equal and parallel. Also, the midline B0L
of triangle AHC is equal and parallel to AK and KH .

It follows that AKA0O and HA0OK are parallelograms. The first one gives A0K = OA = R,
where R is the circumradius of ABC. From the second one we obtain

2(OA2
0 + A0H

2) = OH2 + A0K
2 = OH2 + R2. (2)

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get OA2

1 = (OH2 + R2)/2. By symmetry, the same holds for the
distances OA2, OB1, OB2, OC1 and OC2. Thus A1, A2, B1, B2, C1, C2 all lie on a circle with
centre at O and radius (OH2 + R2)/2.

A

K

B A0 C

H

A1

B0

L

O
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Solution 2. We are going to show again that the circumcentre O is equidistant from the six
points in question.

Let A′ be the second intersection point of ωb and ωc. The line B0C0, which is the line of
centers of circles ωb and ωc, is a midline in triangle ABC, parallel to BC and perpendicular
to the altitude AH . The points A′ and H are symmetric with respect to the line of centers.
Therefore A′ lies on the line AH .

From the two circles ωb and ωc we obtain AC1 · AC2 = AA′ · AH = AB1 · AB2. So the
quadrilateral B1B2C1C2 is cyclic. The perpendicular bisectors of the sides B1B2 and C1C2

meet at O. Hence O is the circumcentre of B1B2C1C2 and so OB1 = OB2 = OC1 = OC2.
Analogous arguments yield OA1 = OA2 = OB1 = OB2 and OA1 = OA2 = OC1 = OC2.

Thus A1, A2, B1, B2, C1, C2 lie on a circle centred at O.

C1

A′

ωc

A

A2

B1

O
C2

CB

B2

ωb

A1

H

C0 B0

A0

Comment. The problem can be solved without much difficulty in many ways by calculation, using
trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using
vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

−→
OA = a,

−−→
OB = b,

−→
OC = c, where a2 = b2 = c2 = R2.

It is well known that
−−→
OH = a + b + c. Accordingly,

−−→
A0H =

−−→
OH −−−→

OA0 = (a + b + c) − b + c

2
=

2a + b + c

2
,

and

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2 =

(
b + c

2

)2

+

(
2a + b + c

2

)2

=
1

4
(b2 + 2bc + c2) +

1

4
(4a2 + 4ab + 4ac + b2 + 2bc + c2) = 2R2 + (ab + ac + bc);

here ab, bc, etc. denote dot products of vectors. We get the same for the distances OA2, OB1,
OB2, OC1 and OC2.
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G2. Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points
E on line BC outside segment BC, and F inside segment AD, such that ∠DAE = ∠CBF .
Denote by I the point of intersection of CD and EF , and by J the point of intersection of AB
and EF . Let K be the midpoint of segment EF ; assume it does not lie on line AB.

Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle
of CDJ .

Solution. Assume that the disposition of points is as in the diagram.
Since ∠EBF = 180◦ − ∠CBF = 180◦ − ∠EAF by hypothesis, the quadrilateral AEBF is

cyclic. Hence AJ · JB = FJ · JE. In view of this equality, I belongs to the circumcircle
of ABK if and only if IJ · JK = FJ · JE. Expressing IJ = IF + FJ , JE = FE − FJ ,
and JK = 1

2
FE − FJ , we find that I belongs to the circumcircle of ABK if and only if

FJ =
IF · FE

2IF + FE
.

Since AEBF is cyclic and AB, CD are parallel, ∠FEC = ∠FAB = 180◦ − ∠CDF . Then
CDFE is also cyclic, yielding ID · IC = IF · IE. It follows that K belongs to the circumcircle
of CDJ if and only if IJ · IK = IF · IE. Expressing IJ = IF + FJ , IK = IF + 1

2
FE, and

IE = IF + FE, we find that K is on the circumcircle of CDJ if and only if

FJ =
IF · FE

2IF + FE
.

The conclusion follows.
E

I C

K

J

D

F

BA

Comment. While the figure shows B inside segment CE, it is possible that C is inside segment BE.
Consequently, I would be inside segment EF and J outside segment EF . The position of point K on
line EF with respect to points I, J may also vary.

Some case may require that an angle ϕ be replaced by 180◦ − ϕ, and in computing distances, a
sum may need to become a difference. All these cases can be covered by the proposed solution if it is
clearly stated that signed distances and angles are used.
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G3. Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that
PQDA and QPBC are cyclic quadrilaterals. Suppose that there exists a point E on the line
segment PQ such that ∠PAE = ∠QDE and ∠PBE = ∠QCE. Show that the quadrilateral
ABCD is cyclic.

Solution 1. Let F be the point on the line AD such that EF‖PA. By hypothesis, the quadri-
lateral PQDA is cyclic. So if F lies between A and D then ∠EFD = ∠PAD = 180◦ − ∠EQD;
the points F and Q are on distinct sides of the line DE and we infer that EFDQ is a
cyclic quadrilateral. And if D lies between A and F then a similar argument shows that
∠EFD = ∠EQD; but now the points F and Q lie on the same side of DE, so that EDFQ is
a cyclic quadrilateral.

In either case we obtain the equality ∠EFQ = ∠EDQ = ∠PAE which implies that FQ‖AE.
So the triangles EFQ and PAE are either homothetic or parallel-congruent. More specifically,
triangle EFQ is the image of PAE under the mapping f which carries the points P , E respec-
tively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely
determined by these conditions and the position of the points P , E, Q alone.

Let now G be the point on the line BC such that EG‖PB. The same reasoning as above
applies to points B, C in place of A, D, implying that the triangle EGQ is the image of PBE
under the same mapping f . So f sends the four points A, P, B, E respectively to F, E, G, Q.

If PE 6= QE, so that f is a homothety with a centre X, then the lines AF , PE, BG—i.e. the
lines AD, PQ, BC—are concurrent at X. And since PQDA and QPBC are cyclic quadri-
laterals, the equalities XA · XD = XP · XQ = XB · XC hold, showing that the quadrilateral
ABCD is cyclic.

Finally, if PE = QE, so that f is a translation, then AD‖PQ‖BC. Thus PQDA and
QPBC are isosceles trapezoids. Then also ABCD is an isosceles trapezoid, hence a cyclic
quadrilateral.

D

F

P E

A

Q

Y

X

B
G

C

Solution 2. Here is another way to reach the conclusion that the lines AD, BC and PQ are
either concurrent or parallel. From the cyclic quadrilateral PQDA we get

∠PAD = 180◦ − ∠PQD = ∠QDE + ∠QED = ∠PAE + ∠QED.
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Hence ∠QED = ∠PAD − ∠PAE = ∠EAD. This in view of the tangent-chord theorem means
that the circumcircle of triangle EAD is tangent to the line PQ at E. Analogously, the
circumcircle of triangle EBC is tangent to PQ at E.

Suppose that the line AD intersects PQ at X. Since XE is tangent to the circle (EAD),
XE2 = XA · XD. Also, XA · XD = XP · XQ because P, Q, D, A lie on a circle. Therefore
XE2 = XP · XQ.

It is not hard to see that this equation determines the position of the point X on the line
PQ uniquely. Thus, if BC also cuts PQ, say at Y , then the analogous equation for Y yields
X = Y , meaning that the three lines indeed concur. In this case, as well as in the case where
AD‖PQ‖BC, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. AD meets PQ at X while BC‖PQ. Indeed,
QPBC would then be an isosceles trapezoid and the angle equality ∠PBE = ∠QCE would
force that E is the midpoint of PQ. So the length of XE, which is the geometric mean of the
lengths of XP and XQ, should also be their arithmetic mean—impossible, as XP 6= XQ. The
proof is now complete.

Comment. After reaching the conclusion that the circles (EDA) and (EBC) are tangent to PQ one
may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by ω1, ω2, ω3, ω4

respectively. Let `ij be the radical axis of the pair (ωi, ωj) for i < j. As is well-known, the lines
`12, `13, `23 concur, possibly at infinity (let this be the meaning of the word concur in this comment).
So do the lines `12, `14, `24. Note however that `23 and `14 both coincide with the line PQ. Hence the
pair `12, PQ is in both triples; thus the four lines `12, `13, `24 and PQ are concurrent.

Similarly, `13, `14, `34 concur, `23, `24, `34 concur, and since `14 = `23 = PQ, the four lines
`13, `24, `34 and PQ are concurrent. The lines `13 and `24 are present in both quadruples, there-
fore all the lines `ij are concurrent. Hence the result.
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G4. In an acute triangle ABC segments BE and CF are altitudes. Two circles passing
through the points A and F are tangent to the line BC at the points P and Q so that B lies
between C and Q. Prove that the lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution 1. To approach the desired result we need some information about the slopes of the
lines PE and QF ; this information is provided by formulas (1) and (2) which we derive below.

The tangents BP and BQ to the two circles passing through A and F are equal, as
BP 2 = BA · BF = BQ2. Consider the altitude AD of triangle ABC and its orthocentre H .
From the cyclic quadrilaterals CDFA and CDHE we get BA · BF = BC · BD = BE · BH.
Thus BP 2 = BE · BH, or BP/BH = BE/BP , implying that the triangles BPH and BEP
are similar. Hence

∠BPE = ∠BHP. (1)

The point P lies between D and C; this follows from the equality BP 2 = BC · BD. In view
of this equality, and because BP = BQ,

DP · DQ = (BP − BD) · (BP + BD) = BP 2 − BD2 = BD · (BC − BD) = BD · DC.

Also AD · DH = BD · DC, as is seen from the similar triangles BDH and ADC. Combining
these equalities we obtain AD · DH = DP · DQ. Therefore DH/DP = DQ/DA, showing that
the triangles HDP and QDA are similar. Hence ∠HPD = ∠QAD, which can be rewritten as
∠BPH = ∠BAD + ∠BAQ. And since BQ is tangent to the circumcircle of triangle FAQ,

∠BQF = ∠BAQ = ∠BPH − ∠BAD. (2)

From (1) and (2) we deduce

∠BPE + ∠BQF = (∠BHP + ∠BPH) − ∠BAD = (180◦ − ∠PBH) − ∠BAD

= (90◦ + ∠BCA) − (90◦ − ∠ABC) = ∠BCA + ∠ABC = 180◦ − ∠CAB.

Thus ∠BPE + ∠BQF < 180◦, which means that the rays PE and QF meet. Let S be the
point of intersection. Then ∠PSQ = 180◦ − (∠BPE + ∠BQF ) = ∠CAB = ∠EAF .

If S lies between P and E then ∠PSQ = 180◦ − ∠ESF ; and if E lies between P and S
then ∠PSQ = ∠ESF . In either case the equality ∠PSQ = ∠EAF which we have obtained
means that S lies on the circumcircle of triangle AEF .
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Solution 2. Let H be the orthocentre of triangle ABC and let ω be the circle with diameter
AH , passing through E and F . Introduce the points of intersection of ω with the following lines
emanating from P : PA ∩ ω = {A, U}, PH ∩ ω = {H, V }, PE ∩ ω = {E, S}. The altitudes of
triangle AHP are contained in the lines AV , HU , BC, meeting at its orthocentre Q′.

By Pascal’s theorem applied to the (tied) hexagon AESFHV , the points AE ∩ FH = C,
ES ∩ HV = P and SF ∩ V A are collinear, so FS passes through Q′.

Denote by ω1 and ω2 the circles with diameters BC and PQ′, respectively. Let D be the
foot of the altitude from A in triangle ABC. Suppose that AD meets the circles ω1 and ω2 at
the respective points K and L.

Since H is the orthocentre of ABC, the triangles BDH and ADC are similar, and so
DA · DH = DB · DC = DK2; the last equality holds because BKC is a right triangle. Since
H is the orthocentre also in triangle AQ′P , we analogously have DL2 = DA · DH. Therefore
DK = DL and K = L.

Also, BD · BC = BA · BF , from the similar triangles ABD, CBF . In the right triangle
BKC we have BK2 = BD · BC. Hence, and because BA · BF = BP 2 = BQ2 (by the defini-
tion of P and Q in the problem statement), we obtain BK = BP = BQ. It follows that B is
the centre of ω2 and hence Q′ = Q. So the lines PE and QF meet at the point S lying on the
circumcircle of triangle AEF .
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Comment 1. If T is the point defined by PF ∩ ω = {F, T}, Pascal’s theorem for the hexagon
AFTEHV will analogously lead to the conclusion that the line ET goes through Q′. In other words,
the lines PF and QE also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative
groups with the operation defined as follows. Choose any point 0 ∈ ω (to be the neutral element of
the group) and a line ` exterior to the circle. For X,Y ∈ ω, draw the line from the point XY ∩ `
through 0 to its second intersection with ω and define this point to be X + Y .

In our solution we have chosen H to be the neutral element in this group and line BC to be `. The
fact that the lines AV , HU , ET , FS are concurrent can be deduced from the identities A + A = 0,
F = E + A, V = U + A = S + E = T + F .

Comment 3. The problem was submitted in the following equivalent formulation:
Let BE and CF be altitudes of an acute triangle ABC. We choose P on the side BC and Q

on the extension of CB beyond B such that BQ2 = BP 2 = BF · AB. If QF and PE intersect at S,
prove that ESAF is cyclic.



36

G5. Let k and n be integers with 0 ≤ k ≤ n− 2. Consider a set L of n lines in the plane such
that no two of them are parallel and no three have a common point. Denote by I the set of
intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point X ∈ I is colored red if the open line segment OX intersects at most k lines in L.
Prove that I contains at least 1

2
(k + 1)(k + 2) red points.

Solution. There are at least 1
2
(k + 1)(k + 2) points in the intersection set I in view of the

condition n ≥ k + 2.
For each point P ∈ I, define its order as the number of lines that intersect the open line

segment OP . By definition, P is red if its order is at most k. Note that there is always at
least one point X ∈ I of order 0. Indeed, the lines in L divide the plane into regions, bounded
or not, and O belongs to one of them. Clearly any corner of this region is a point of I with
order 0.

Claim. Suppose that two points P, Q ∈ I lie on the same line of L, and no other line of L
intersects the open line segment PQ. Then the orders of P and Q differ by at most 1.

Proof. Let P and Q have orders p and q, respectively, with p ≥ q. Consider triangle OPQ.
Now p equals the number of lines in L that intersect the interior of side OP . None of these
lines intersects the interior of side PQ, and at most one can pass through Q. All remaining
lines must intersect the interior of side OQ, implying that q ≥ p − 1. The conclusion follows.

We prove the main result by induction on k. The base k = 0 is clear since there is a point
of order 0 which is red. Assuming the statement true for k − 1, we pass on to the inductive
step. Select a point P ∈ I of order 0, and consider one of the lines ` ∈ L that pass through P .
There are n− 1 intersection points on `, one of which is P . Out of the remaining n− 2 points,
the k closest to P have orders not exceeding k by the Claim. It follows that there are at least
k + 1 red points on `.

Let us now consider the situation with ` removed (together with all intersection points
it contains). By hypothesis of induction, there are at least 1

2
k(k + 1) points of order not

exceeding k − 1 in the resulting configuration. Restoring ` back produces at most one new
intersection point on each line segment joining any of these points to O, so their order is at
most k in the original configuration. The total number of points with order not exceeding k is
therefore at least (k + 1) + 1

2
k(k + 1) = 1

2
(k + 1)(k + 2). This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n
lines such that equality holds simultaneously for all 0 ≤ k ≤ n− 2. Such a set of lines is illustrated in
the Figure.
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G6. There is given a convex quadrilateral ABCD. Prove that there exists a point P inside
the quadrilateral such that

∠PAB + ∠PDC = ∠PBC + ∠PAD = ∠PCD + ∠PBA = ∠PDA + ∠PCB = 90◦ (1)

if and only if the diagonals AC and BD are perpendicular.

Solution 1. For a point P in ABCD which satisfies (1), let K, L, M, N be the feet of per-
pendiculars from P to lines AB, BC, CD, DA, respectively. Note that K, L, M, N are interior
to the sides as all angles in (1) are acute. The cyclic quadrilaterals AKPN and DNPM give

∠PAB + ∠PDC = ∠PNK + ∠PNM = ∠KNM.

Analogously, ∠PBC + ∠PAD = ∠LKN and ∠PCD + ∠PBA = ∠MLK . Hence the equal-
ities (1) imply ∠KNM = ∠LKN = ∠MLK = 90◦, so that KLMN is a rectangle. The
converse also holds true, provided that K, L, M, N are interior to sides AB, BC, CD, DA.

(i) Suppose that there exists a point P in ABCD such that KLMN is a rectangle. We show
that AC and BD are parallel to the respective sides of KLMN .

Let OA and OC be the circumcentres of the cyclic quadrilaterals AKPN and CMPL. Line
OAOC is the common perpendicular bisector of LM and KN , therefore OAOC is parallel to KL
and MN . On the other hand, OAOC is the midline in the triangle ACP that is parallel to AC.
Therefore the diagonal AC is parallel to the sides KL and MN of the rectangle. Likewise, BD
is parallel to KN and LM . Hence AC and BD are perpendicular.
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(ii) Suppose that AC and BD are perpendicular and meet at R. If ABCD is a rhombus, P
can be chosen to be its centre. So assume that ABCD is not a rhombus, and let BR < DR
without loss of generality.

Denote by UA and UC the circumcentres of the triangles ABD and CDB, respectively. Let
AVA and CVC be the diameters through A and C of the two circumcircles. Since AR is an
altitude in triangle ADB, lines AC and AVA are isogonal conjugates, i. e. ∠DAVA = ∠BAC.
Now BR < DR implies that ray AUA lies in ∠DAC. Similarly, ray CUC lies in ∠DCA. Both
diameters AVA and CVC intersect BD as the angles at B and D of both triangles are acute.
Also UAUC is parallel to AC as it is the perpendicular bisector of BD. Hence VAVC is parallel
to AC, too. We infer that AVA and CVC intersect at a point P inside triangle ACD, hence
inside ABCD.
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Construct points K, L, M, N, OA and OC in the same way as in the introduction. It follows
from the previous paragraph that K, L, M, N are interior to the respective sides. Now OAOC

is a midline in triangle ACP again. Therefore lines AC, OAOC and UAUC are parallel.
The cyclic quadrilateral AKPN yields ∠NKP = ∠NAP . Since ∠NAP = ∠DAUA =

∠BAC, as specified above, we obtain ∠NKP = ∠BAC. Because PK is perpendicular to AB,
it follows that NK is perpendicular to AC, hence parallel to BD. Likewise, LM is parallel
to BD.

Consider the two homotheties with centres A and C which transform triangles ABD and
CDB into triangles AKN and CML, respectively. The images of points UA and UC are OA and
OC, respectively. Since UAUC and OAOC are parallel to AC, the two ratios of homothety are
the same, equal to λ = AN/AD = AK/AB = AOA/AUA = COC/CUC = CM/CD = CL/CB.
It is now straightforward that DN/DA = DM/DC = BK/BA = BL/BC = 1−λ. Hence KL
and MN are parallel to AC, implying that KLMN is a rectangle and completing the proof.
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Solution 2. For a point P distinct from A, B, C, D, let circles (APD) and (BPC) inter-
sect again at Q (Q = P if the circles are tangent). Next, let circles (AQB) and (CQD)
intersect again at R. We show that if P lies in ABCD and satisfies (1) then AC and BD
intersect at R and are perpendicular; the converse is also true. It is convenient to use directed
angles. Let ](UV, XY ) denote the angle of counterclockwise rotation that makes line UV
parallel to line XY . Recall that four noncollinear points U, V, X, Y are concyclic if and only if
](UX, V X) = ](UY, V Y ).

The definitions of points P , Q and R imply

](AR, BR) = ](AQ, BQ) = ](AQ, PQ) + ](PQ, BQ) = ](AD, PD) + ](PC, BC),

](CR, DR) = ](CQ, DQ) = ](CQ, PQ) + ](PQ, DQ) = ](CB, PB) + ](PA, DA),

](BR, CR) = ](BR, RQ) + ](RQ, CR) = ](BA, AQ) + ](DQ, CD)

= ](BA, AP ) + ](AP, AQ) + ](DQ, DP ) + ](DP, CD)

= ](BA, AP ) + ](DP, CD).

Observe that the whole construction is reversible. One may start with point R, define Q as the
second intersection of circles (ARB) and (CRD), and then define P as the second intersection
of circles (AQD) and (BQC). The equalities above will still hold true.
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Assume in addition that P is interior to ABCD. Then

](AD, PD) = ∠PDA, ](PC, BC) = ∠PCB, ](CB, PB) = ∠PBC, ](PA, DA) = ∠PAD,

](BA, AP ) = ∠PAB, ](DP, CD) = ∠PDC.

(i) Suppose that P lies in ABCD and satisfies (1). Then ](AR, BR) = ∠PDA+∠PCB = 90◦

and similarly ](BR, CR) = ](CR, DR) = 90◦. It follows that R is the common point of
lines AC and BD, and that these lines are perpendicular.
(ii) Suppose that AC and BD are perpendicular and intersect at R. We show that the point P
defined by the reverse construction (starting with R and ending with P ) lies in ABCD. This
is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles (ABR) and (CDR), lies
in ∠ARD. Then in fact Q lies in triangle ADR as angles AQR and DQR are obtuse. Hence
∠AQD is obtuse, too, so that B and C are outside circle (ADQ) (∠ABD and ∠ACD are
acute).

Now ∠CAB+∠CDB = ∠BQR+∠CQR = ∠CQB implies ∠CAB < ∠CQB and ∠CDB <
∠CQB. Hence A and D are outside circle (BCQ). In conclusion, the second common point P
of circles (ADQ) and (BCQ) lies on their arcs ADQ and BCQ.

We can assume that P lies in ∠CQD. Since

∠QPC + ∠QPD = (180◦ − ∠QBC) + (180◦ − ∠QAD) =

= 360◦ − (∠RBC + ∠QBR) − (∠RAD − ∠QAR) = 360◦ − ∠RBC − ∠RAD > 180◦,

point P lies in triangle CDQ, and hence in ABCD. The proof is complete.

B

C

D

A

Q

R

P



40

G7. Let ABCD be a convex quadrilateral with AB 6= BC. Denote by ω1 and ω2 the incircles
of triangles ABC and ADC. Suppose that there exists a circle ω inscribed in angle ABC,
tangent to the extensions of line segments AD and CD. Prove that the common external
tangents of ω1 and ω2 intersect on ω.

Solution. The proof below is based on two known facts.

Lemma 1. Given a convex quadrilateral ABCD, suppose that there exists a circle which is
inscribed in angle ABC and tangent to the extensions of line segments AD and CD. Then
AB + AD = CB + CD.

Proof. The circle in question is tangent to each of the lines AB, BC, CD, DA, and the respective
points of tangency K, L, M, N are located as with circle ω in the figure. Then

AB + AD = (BK − AK) + (AN − DN), CB + CD = (BL − CL) + (CM − DM).

Also BK = BL, DN = DM , AK = AN , CL = CM by equalities of tangents. It follows that
AB + AD = CB + CD.
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For brevity, in the sequel we write “excircle AC” for the excircle of a triangle with side AC
which is tangent to line segment AC and the extensions of the other two sides.

Lemma 2. The incircle of triangle ABC is tangent to its side AC at P . Let PP ′ be the diameter
of the incircle through P , and let line BP ′ intersect AC at Q. Then Q is the point of tangency
of side AC and excircle AC.

Proof. Let the tangent at P ′ to the incircle ω1 meet BA and BC at A′ and C ′. Now ω1 is the
excircle A′C ′ of triangle A′BC ′, and it touches side A′C ′ at P ′. Since A′C ′ ‖ AC, the homothety
with centre B and ratio BQ/BP ′ takes ω1 to the excircle AC of triangle ABC. Because this
homothety takes P ′ to Q, the lemma follows.



41

Recall also that if the incircle of a triangle touches its side AC at P , then the tangency
point Q of the same side and excircle AC is the unique point on line segment AC such that
AP = CQ.

We pass on to the main proof. Let ω1 and ω2 touch AC at P and Q, respectively; then
AP = (AC + AB − BC)/2, CQ = (CA + CD − AD)/2. Since AB − BC = CD − AD
by Lemma 1, we obtain AP = CQ. It follows that in triangle ABC side AC and excircle AC
are tangent at Q. Likewise, in triangle ADC side AC and excircle AC are tangent at P . Note
that P 6= Q as AB 6= BC.

Let PP ′ and QQ′ be the diameters perpendicular to AC of ω1 and ω2, respectively. Then
Lemma 2 shows that points B, P ′ and Q are collinear, and so are points D, Q′ and P .

Consider the diameter of ω perpendicular to AC and denote by T its endpoint that is closer
to AC. The homothety with centre B and ratio BT/BP ′ takes ω1 to ω. Hence B, P ′ and T
are collinear. Similarly, D, Q′ and T are collinear since the homothety with centre D and
ratio −DT/DQ′ takes ω2 to ω.

We infer that points T, P ′ and Q are collinear, as well as T, Q′ and P . Since PP ′ ‖ QQ′, line
segments PP ′ and QQ′ are then homothetic with centre T . The same holds true for circles ω1

and ω2 because they have PP ′ and QQ′ as diameters. Moreover, it is immediate that T lies on
the same side of line PP ′ as Q and Q′, hence the ratio of homothety is positive. In particular
ω1 and ω2 are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω1 to
circle ω2. This completes the solution, since the only point with the mentioned property is the
intersection of the the common external tangents of ω1 and ω2.
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Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers
(not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa,

then a = b = c.

Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we
may assume that a 6= b 6= c 6= a. Subtracting the equations we get an − bn = −p(b − c) and two
cyclic copies of this equation, which upon multiplication yield

an − bn

a − b
· bn − cn

b − c
· cn − an

c − a
= −p3. (1)

If n is odd then the differences an − bn and a − b have the same sign and the product on the
left is positive, while −p3 is negative. So n must be even.

Let d be the greatest common divisor of the three differences a − b, b − c, c − a, so that
a − b = du, b − c = dv, c − a = dw; gcd(u, v, w) = 1, u + v + w = 0.

From an − bn = −p(b − c) we see that (a − b)|p(b − c), i.e., u|pv; and cyclically v|pw, w|pu.
As gcd(u, v, w) = 1 and u + v + w = 0, at most one of u, v, w can be divisible by p. Sup-
posing that the prime p does not divide any one of them, we get u|v, v|w, w|u, whence
|u| = |v| = |w| = 1; but this quarrels with u + v + w = 0.

Thus p must divide exactly one of these numbers. Let e.g. p|u and write u = pu1. Now
we obtain, similarly as before, u1|v, v|w, w|u1 so that |u1| = |v| = |w| = 1. The equation
pu1 + v + w = 0 forces that the prime p must be even; i.e. p = 2. Hence v + w = −2u1 = ±2,
implying v = w (= ±1) and u = −2v. Consequently a − b = −2(b − c).

Knowing that n is even, say n = 2k, we rewrite the equation an − bn = −p(b − c) with p = 2
in the form

(ak + bk)(ak − bk) = −2(b − c) = a − b.

The second factor on the left is divisible by a − b, so the first factor (ak + bk) must be ±1.
Then exactly one of a and b must be odd; yet a − b = −2(b − c) is even. Contradiction ends
the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal,
hence are all distinct, we derive equation (1) with the conclusion that n is even. Write n = 2k.

Suppose that p is odd. Then the integer

an − bn

a − b
= an−1 + an−2b + · · ·+ bn−1,
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which is a factor in (1), must be odd as well. This sum of n = 2k summands is odd only if
a and b have different parities. The same conclusion holding for b, c and for c, a, we get that
a, b, c, a alternate in their parities, which is clearly impossible.

Thus p = 2. The original system shows that a, b, c must be of the same parity. So we may
divide (1) by p3, i.e. 23, to obtain the following product of six integer factors:

ak + bk

2
· ak − bk

a − b
· bk + ck

2
· bk − ck

b − c
· ck + ak

2
· ck − ak

c − a
= −1. (2)

Each one of the factors must be equal to ±1. In particular, ak + bk = ±2. If k is even, this
becomes ak + bk = 2 and yields |a| = |b| = 1, whence ak − bk = 0, contradicting (2).

Let now k be odd. Then the sum ak + bk, with value ±2, has a + b as a factor. Since a and b
are of the same parity, this means that a + b = ±2; and cyclically, b + c = ±2, c + a = ±2. In
some two of these equations the signs must coincide, hence some two of a, b, c are equal. This
is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decomposi-
tions of −p3 (cube of a prime) into a product of three integers. This leads to cumbersome examination
of many cases, some of which are unpleasant to handle. One may do that just for p = 2, having earlier
in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What
is actually being used in that solution, is that p is either a positive odd integer or p = 2.
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N2. Let a1, a2, . . . , an be distinct positive integers, n ≥ 3. Prove that there exist distinct
indices i and j such that ai + aj does not divide any of the numbers 3a1, 3a2, . . . , 3an.

Solution. Without loss of generality, let 0 < a1 < a2 < · · · < an. One can also assume that
a1, a2, . . . , an are coprime. Otherwise division by their greatest common divisor reduces the
question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each i < n there exists a j such that an + ai

divides 3aj . If an + ai is not divisible by 3 then an + ai divides aj which is impossible as
0 < aj ≤ an < an +ai. Thus an+ai is a multiple of 3 for i = 1, . . . , n−1, so that a1, a2, . . . , an−1

are all congruent (to −an) modulo 3.
Now an is not divisible by 3 or else so would be all remaining ai’s, meaning that a1, a2, . . . , an

are not coprime. Hence an ≡ r (mod 3) where r ∈ {1, 2}, and ai ≡ 3 − r (mod 3) for all
i = 1, . . . , n − 1.

Consider a sum an−1 +ai where 1 ≤ i ≤ n−2. There is at least one such sum as n ≥ 3. Let
j be an index such that an−1 + ai divides 3aj. Observe that an−1 + ai is not divisible by 3 since
an−1 + ai ≡ 2ai 6≡ 0 (mod 3). It follows that an−1 + ai divides aj, in particular an−1 + ai ≤ aj .
Hence an−1 < aj ≤ an, implying j = n. So an is divisible by all sums an−1 + ai, 1 ≤ i ≤ n − 2.
In particular an−1 + ai ≤ an for i = 1, . . . , n − 2.

Let j be such that an + an−1 divides 3aj. If j ≤ n − 2 then an + an−1 ≤ 3aj < aj + 2an−1.
This yields an < an−1 +aj; however an−1 +aj ≤ an for j ≤ n−2. Therefore j = n−1 or j = n.

For j = n − 1 we obtain 3an−1 = k(an + an−1) with k an integer, and it is straightforward
that k = 1 (k ≤ 0 and k ≥ 3 contradict 0 < an−1 < an; k = 2 leads to an−1 = 2an > an−1).
Thus 3an−1 = an + an−1, i. e. an = 2an−1.

Similarly, if j = n then 3an = k(an + an−1) for some integer k, and only k = 2 is possible.
Hence an = 2an−1 holds true in both cases remaining, j = n − 1 and j = n.

Now an = 2an−1 implies that the sum an−1 + a1 is strictly between an/2 and an. But an−1

and a1 are distinct as n ≥ 3, so it follows from the above that an−1 + a1 divides an. This
provides the desired contradiction.
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N3. Let a0, a1, a2, . . . be a sequence of positive integers such that the greatest common divisor
of any two consecutive terms is greater than the preceding term; in symbols, gcd(ai, ai+1) > ai−1.
Prove that an ≥ 2n for all n ≥ 0.

Solution. Since ai ≥ gcd(ai, ai+1) > ai−1, the sequence is strictly increasing. In particular
a0 ≥ 1, a1 ≥ 2. For each i ≥ 1 we also have ai+1 − ai ≥ gcd(ai, ai+1) > ai−1, and consequently
ai+1 ≥ ai + ai−1 + 1. Hence a2 ≥ 4 and a3 ≥ 7. The equality a3 = 7 would force equalities
in the previous estimates, leading to gcd(a2, a3) = gcd(4, 7) > a1 = 2, which is false. Thus
a3 ≥ 8; the result is valid for n = 0, 1, 2, 3. These are the base cases for a proof by induction.

Take an n ≥ 3 and assume that ai ≥ 2i for i = 0, 1, . . . , n. We must show that an+1 ≥ 2n+1.
Let gcd(an, an+1) = d. We know that d > an−1. The induction claim is reached immediately
in the following cases:

if an+1 ≥ 4d then an+1 > 4an−1 ≥ 4 · 2n−1 = 2n+1 ;

if an ≥ 3d then an+1 ≥ an +d ≥ 4d > 4an−1 ≥ 4 ·2n−1 = 2n+1 ;

if an = d then an+1 ≥ an + d = 2an ≥ 2 · 2n = 2n+1.

The only remaining possibility is that an = 2d and an+1 = 3d, which we assume for the
sequel. So an+1 = 3

2
an.

Let now gcd(an−1, an) = d′; then d′ > an−2. Write an = md′ (m an integer). Keeping
in mind that d′ ≤ an−1 < d and an = 2d, we get that m ≥ 3. Also an−1 < d = 1

2
md′,

an+1 = 3
2
md′. Again we single out the cases which imply the induction claim immediately:

if m ≥ 6 then an+1 = 3
2
md′ ≥ 9d′ > 9an−2 ≥ 9 · 2n−2 > 2n+1 ;

if 3 ≤ m ≤ 4 then an−1 < 1
2
· 4d′, and hence an−1 = d′,

an+1 = 3
2
man−1 ≥ 3

2
·3an−1 ≥ 9

2
·2n−1 > 2n+1.

So we are left with the case m = 5, which means that an = 5d′, an+1 = 15
2
d′ , an−1 < d = 5

2
d′.

The last relation implies that an−1 is either d′ or 2d′. Anyway, an−1|2d′.

The same pattern repeats once more. We denote gcd(an−2, an−1) = d′′; then d′′ > an−3.
Because d′′ is a divisor of an−1, hence also of 2d′, we may write 2d′ = m′d′′ (m′ an integer).
Since d′′ ≤ an−2 < d′, we get m′ ≥ 3. Also, an−2 < d′ = 1

2
m′d′′, an+1 = 15

2
d′ = 15

4
m′d′′. As

before, we consider the cases:

if m′ ≥ 5 then an+1 = 15
4
m′d′′ ≥ 75

4
d′′ > 75

4
an−3 ≥ 75

4
·2n−3 > 2n+1 ;

if 3 ≤ m′ ≤ 4 then an−2 < 1
2
· 4d′′, and hence an−2 = d′′,

an+1 = 15
4
m′an−2 ≥ 15

4
·3an−2 ≥ 45

4
·2n−2 > 2n+1.

Both of them have produced the induction claim. But now there are no cases left. Induction
is complete; the inequality an ≥ 2n holds for all n.
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N4. Let n be a positive integer. Show that the numbers
(

2n − 1

0

)

,

(
2n − 1

1

)

,

(
2n − 1

2

)

, . . . ,

(
2n − 1

2n−1 − 1

)

are congruent modulo 2n to 1, 3, 5, . . . , 2n−1 in some order.

Solution 1. It is well-known that all these numbers are odd. So the assertion that their
remainders (mod 2n) make up a permutation of {1, 3, . . . , 2n−1} is equivalent just to saying
that these remainders are all distinct. We begin by showing that
(

2n − 1

2k

)

+

(
2n − 1

2k + 1

)

≡ 0 (mod 2n) and

(
2n − 1

2k

)

≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n). (1)

The first relation is immediate, as the sum on the left is equal to
(

2n

2k+1

)
= 2n

2k+1

(
2n−1
2k

)
, hence

is divisible by 2n. The second relation:

(
2n − 1

2k

)

=
2k∏

j=1

2n − j

j
=

k∏

i=1

2n − (2i−1)

2i − 1
·

k∏

i=1

2n−1 − i

i
≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n).

This prepares ground for a proof of the required result by induction on n. The base case
n = 1 is obvious. Assume the assertion is true for n − 1 and pass to n, denoting ak =

(
2n−1−1

k

)
,

bm =
(
2n−1

m

)
. The induction hypothesis is that all the numbers ak (0 ≤ k < 2n−2) are distinct

(mod 2n−1); the claim is that all the numbers bm (0 ≤ m < 2n−1) are distinct (mod 2n).
The congruence relations (1) are restated as

b2k ≡ (−1)kak ≡ −b2k+1 (mod 2n). (2)

Shifting the exponent in the first relation of (1) from n to n − 1 we also have the congruence
a2i+1 ≡ −a2i (mod 2n−1). We hence conclude:

If, for some j, k < 2n−2, ak ≡ −aj (mod 2n−1), then {j, k} = {2i, 2i+1} for some i. (3)

This is so because in the sequence (ak : k < 2n−2) each term aj is complemented to 0 (mod 2n−1)
by only one other term ak, according to the induction hypothesis.

From (2) we see that b4i ≡ a2i and b4i+3 ≡ a2i+1 (mod 2n). Let

M = {m : 0 ≤ m < 2n−1, m ≡ 0 or 3 (mod 4)}, L= {l : 0 ≤ l < 2n−1, l ≡ 1 or 2 (mod 4)}.
The last two congruences take on the unified form

bm ≡ abm/2c (mod 2n) for all m ∈ M. (4)

Thus all the numbers bm for m ∈ M are distinct (mod 2n) because so are the numbers ak (they
are distinct (mod 2n−1), hence also (mod 2n)).

Every l ∈ L is paired with a unique m ∈ M into a pair of the form {2k, 2k+1}. So (2) implies
that also all the bl for l ∈ L are distinct (mod 2n). It remains to eliminate the possibility that
bm ≡ bl (mod 2n) for some m ∈ M , l ∈ L.

Suppose that such a situation occurs. Let m′ ∈ M be such that {m′, l} is a pair of the form
{2k, 2k+1}, so that (see (2)) bm′ ≡ −bl (mod 2n). Hence bm′ ≡ −bm (mod 2n). Since both
m′ and m are in M , we have by (4) bm′ ≡ aj , bm ≡ ak (mod 2n) for j = bm′/2c, k = bm/2c.

Then aj ≡ −ak (mod 2n). Thus, according to (3), j = 2i, k = 2i + 1 for some i (or vice

versa). The equality a2i+1 ≡ −a2i (mod 2n) now means that
(
2n−1−1

2i

)
+

(
2n−1−1

2i+1

)
≡ 0 (mod 2n).

However, the sum on the left is equal to
(
2n−1

2i+1

)
. A number of this form cannot be divisible

by 2n. This is a contradiction which concludes the induction step and proves the result.
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Solution 2. We again proceed by induction, writing for brevity N = 2n−1 and keeping notation
ak =

(
N−1

k

)
, bm =

(
2N−1

m

)
. Assume that the result holds for the sequence (a0, a1, a2, . . . , aN/2−1).

In view of the symmetry aN−1−k = ak this sequence is a permutation of (a0, a2, a4, . . . , aN−2).
So the induction hypothesis says that this latter sequence, taken (mod N), is a permutation of
(1, 3, 5, . . . , N−1). Similarly, the induction claim is that (b0, b2, b4, . . . , b2N−2), taken (mod 2N),
is a permutation of (1, 3, 5, . . . , 2N−1).

In place of the congruence relations (2) we now use the following ones,

b4i ≡ a2i (mod N) and b4i+2 ≡ b4i + N (mod 2N). (5)

Given this, the conclusion is immediate: the first formula of (5) together with the induction
hypothesis tells us that (b0, b4, b8, . . . , b2N−4) (mod N) is a permutation of (1, 3, 5, . . . , N−1).
Then the second formula of (5) shows that (b2, b6, b10, . . . , b2N−2) (mod N) is exactly the same
permutation; moreover, this formula distinguishes (mod 2N) each b4i from b4i+2.

Consequently, these two sequences combined represent (mod 2N) a permutation of the
sequence (1, 3, 5, . . . , N−1, N+1, N+3, N+5, . . . , N+N−1), and this is precisely the induction
claim.

Now we prove formulas (5); we begin with the second one. Since bm+1 = bm · 2N−m−1
m+1

,

b4i+2 = b4i ·
2N − 4i − 1

4i + 1
· 2N − 4i − 2

4i + 2
= b4i ·

2N − 4i − 1

4i + 1
· N − 2i − 1

2i + 1
.

The desired congruence b4i+2 ≡ b4i + N may be multiplied by the odd number (4i + 1)(2i + 1),
giving rise to a chain of successively equivalent congruences:

b4i(2N − 4i − 1)(N − 2i − 1) ≡ (b4i + N)(4i + 1)(2i + 1) (mod 2N),

b4i(2i + 1 − N) ≡ (b4i + N)(2i + 1) (mod 2N),

(b4i + 2i + 1)N ≡ 0 (mod 2N);

and the last one is satisfied, as b4i is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for i = 0. Assume b4i ≡ a2i (mod 2N)

and consider i + 1:

b4i+4 = b4i+2 ·
2N − 4i − 3

4i + 3
· 2N − 4i − 4

4i + 4
; a2i+2 = a2i ·

N − 2i − 1

2i + 1
· N − 2i − 2

2i + 2
.

Both expressions have the fraction N−2i−2
2i+2

as the last factor. Since 2i + 2 < N = 2n−1, this
fraction reduces to `/m with ` and m odd. In showing that b4i+4 ≡ a2i+2 (mod 2N), we may
ignore this common factor `/m. Clearing other odd denominators reduces the claim to

b4i+2(2N − 4i − 3)(2i + 1) ≡ a2i(N − 2i − 1)(4i + 3) (mod 2N).

By the inductive assumption (saying that b4i ≡ a2i (mod 2N)) and by the second relation of (5),
this is equivalent to

(b4i + N)(2i + 1) ≡ b4i(2i + 1 − N) (mod 2N),

a congruence which we have already met in the preceding proof a few lines above. This com-
pletes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the
assertion into: Show that these numbers leave distinct remainders in division by 2n.
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N5. For every n ∈ N let d(n) denote the number of (positive) divisors of n. Find all func-
tions f : N → N with the following properties:

(i) d(f(x)) = x for all x ∈ N;

(ii) f(xy) divides (x − 1)yxy−1f(x) for all x, y ∈ N.

Solution. There is a unique solution: the function f : N → N defined by f(1) = 1 and

f(n) = p
p

a1

1
−1

1 p
p

a2

2
−1

2 · · · pp
ak
k

−1

k where n = pa1

1 pa2

2 · · ·pak

k is the prime factorization of n > 1. (1)

Direct verification shows that this function meets the requirements.

Conversely, let f : N → N satisfy (i) and (ii). Applying (i) for x = 1 gives d(f(1)) = 1, so
f(1) = 1. In the sequel we prove that (1) holds for all n > 1. Notice that f(m) = f(n) implies

m = n in view of (i). The formula d
(

pb1
1 · · ·pbk

k

)

= (b1 +1) · · · (bk +1) will be used throughout.

Let p be a prime. Since d(f(p)) = p, the formula just mentioned yields f(p) = qp−1 for some
prime q; in particular f(2) = q2−1 = q is a prime. We prove that f(p) = pp−1 for all primes p.

Suppose that p is odd and f(p) = qp−1 for a prime q. Applying (ii) first with x = 2,
y = p and then with x = p, y = 2 shows that f(2p) divides both (2 − 1)p2p−1f(2) = p2p−1f(2)
and (p − 1)22p−1f(p) = (p − 1)22p−1qp−1. If q 6= p then the odd prime p does not divide
(p−1)22p−1qp−1, hence the greatest common divisor of p2p−1f(2) and (p−1)22p−1qp−1 is a divisor
of f(2). Thus f(2p) divides f(2) which is a prime. As f(2p) > 1, we obtain f(2p) = f(2) which
is impossible. So q = p, i. e. f(p) = pp−1.

For p = 2 the same argument with x = 2, y = 3 and x = 3, y = 2 shows that f(6)
divides both 35f(2) and 26f(3) = 2632. If the prime f(2) is odd then f(6) divides 32 = 9, so
f(6) ∈ {1, 3, 9}. However then 6 = d(f(6)) ∈ {d(1), d(3), d(9)} = {1, 2, 3} which is false. In
conclusion f(2) = 2.

Next, for each n > 1 the prime divisors of f(n) are among the ones of n. Indeed, let p be
the least prime divisor of n. Apply (ii) with x = p and y = n/p to obtain that f(n) divides
(p−1)yn−1f(p) = (p−1)yn−1pp−1. Write f(n) = `P where ` is coprime to n and P is a product
of primes dividing n. Since ` divides (p−1)yn−1pp−1 and is coprime to yn−1pp−1, it divides p−1;
hence d(`) ≤ ` < p. But (i) gives n = d(f(n)) = d(`P ), and d(`P ) = d(`)d(P ) as ` and P are
coprime. Therefore d(`) is a divisor of n less than p, meaning that ` = 1 and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and a ≥ 1, by the above the
only prime factor of f (pa) is p (a prime factor does exist as f (pa) > 1). So f (pa) = pb for
some b ≥ 1, and (i) yields pa = d(f (pa)) = d

(
pb

)
= b + 1. Hence f (pa) = ppa−1, as needed.

Let us finally show that (1) is true for a general n > 1 with prime factorization n = pa1

1 · · · pak

k .
We saw that the prime factorization of f(n) has the form f(n) = pb1

1 · · · pbk

k . For i = 1, . . . , k,
set x = pai

i and y = n/x in (ii) to infer that f(n) divides (pai

i − 1) yn−1f (pai

i ). Hence pbi

i divides
(pai

i − 1) yn−1f (pai

i ), and because pbi

i is coprime to (pai

i − 1) yn−1, it follows that pbi

i divides

f (pai

i ) = p
p

ai
i
−1

i . So bi ≤ pai

i −1 for all i = 1, . . . , k. Combined with (i), these conclusions imply

pa1

1 · · ·pak

k = n = d(f(n)) = d
(

pb1
1 · · · pbk

k

)

= (b1 + 1) · · · (bk + 1) ≤ pa1

1 · · · pak

k .

Hence all inequalities bi ≤ pai

i −1 must be equalities, i = 1, . . . , k, implying that (1) holds true.
The proof is complete.
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N6. Prove that there exist infinitely many positive integers n such that n2 + 1 has a prime
divisor greater than 2n +

√
2n.

Solution. Let p ≡ 1 (mod 8) be a prime. The congruence x2 ≡ −1 (mod p) has two solutions
in [1, p−1] whose sum is p. If n is the smaller one of them then p divides n2+1 and n ≤ (p−1)/2.
We show that p > 2n +

√
10n.

Let n = (p − 1)/2 − ` where ` ≥ 0. Then n2 ≡ −1 (mod p) gives

(
p − 1

2
− `

)2

≡ −1 (mod p) or (2` + 1)2 + 4 ≡ 0 (mod p).

Thus (2`+1)2 +4 = rp for some r ≥ 0. As (2`+1)2 ≡ 1 ≡ p (mod 8), we have r ≡ 5 (mod 8),
so that r ≥ 5. Hence (2` + 1)2 + 4 ≥ 5p, implying ` ≥

(√
5p − 4 − 1

)
/2. Set

√
5p − 4 = u for

clarity; then ` ≥ (u − 1)/2. Therefore

n =
p − 1

2
− ` ≤ 1

2

(
p − u

)
.

Combined with p = (u2 + 4)/5, this leads to u2 − 5u − 10n + 4 ≥ 0. Solving this quadratic
inequality with respect to u ≥ 0 gives u ≥

(
5 +

√
40n + 9

)
/2. So the estimate n ≤

(
p − u

)
/2

leads to

p ≥ 2n + u ≥ 2n +
1

2

(
5 +

√
40n + 9

)
> 2n +

√
10n.

Since there are infinitely many primes of the form 8k + 1, it follows easily that there are
also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product

N∏

n=1

(n2 +1), it can be obtained that

its greatest prime divisor is at least cN log N . This could improve the statement as p > n log n.
However, the proof applies some advanced information about the distribution of the primes of the

form 4k + 1, which is inappropriate for high schools contests.
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